Home > College Algebra calculators > Extended Euclidean Algorithm example

2. Extended Euclidean Algorithm example ( Enter your problem )
  1. Examples
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation

1. Chinese Remainder Theorem
(Previous method)
3. Euclid's Algorithm
(Next method)

1. Examples





1. Extended Euclidean Algorithm for `11` and `12`

Solution:
`y-=z^(-1)\ ("mod "n)-=11^(-1)\ ("mod "12)-=11\ ("mod "12)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
11210
21101
3`12-:11=1``12-1xx11=1``1-1xx0=1``0-1xx1=-1`
4`11-:1=11``11-11xx1=0``0-11xx1=-11``1-11xx-1=12`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-1`

Showing the identity, we have `12s+11t = gcd(12,11)=1`

`12(1)+11(-1)=1`


2. Extended Euclidean Algorithm for `7` and `11`

Solution:
`y-=z^(-1)\ ("mod "n)-=7^(-1)\ ("mod "11)-=8\ ("mod "11)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
11110
2701
3`11-:7=1``11-1xx7=4``1-1xx0=1``0-1xx1=-1`
4`7-:4=1``7-1xx4=3``0-1xx1=-1``1-1xx-1=2`
5`4-:3=1``4-1xx3=1``1-1xx-1=2``-1-1xx2=-3`
6`3-:1=3``3-3xx1=0``-1-3xx2=-7``2-3xx-3=11`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=2,t=-3`

Showing the identity, we have `11s+7t = gcd(11,7)=1`

`11(2)+7(-3)=1`


3. Extended Euclidean Algorithm for `3` and `7`

Solution:
`y-=z^(-1)\ ("mod "n)-=3^(-1)\ ("mod "7)-=5\ ("mod "7)`

Extended Euclidean Algorithm
iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1710
2301
3`7-:3=2``7-2xx3=1``1-2xx0=1``0-2xx1=-2`
4`3-:1=3``3-3xx1=0``0-3xx1=-3``1-3xx-2=7`


we get answer by taking the last non-zero row for Remainder `r=1` (gcd), `s=1,t=-2`

Showing the identity, we have `7s+3t = gcd(7,3)=1`

`7(1)+3(-2)=1`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Chinese Remainder Theorem
(Previous method)
3. Euclid's Algorithm
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.