Home > College Algebra calculators > Fast modular exponentiation example

6. Fast modular exponentiation example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `19^24 mod 21`
  3. Example-3 : `7^106 mod 143`
  4. Example-4 : `27^400 mod 619`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation

5. Modulo
(Previous method)
2. Example-2 : `19^24 mod 21`
(Next example)

1. Example-1 : `3^302 mod 5`





1. 3^302 mod 5

Solution:
Fast Modular Exponentiation
`3^302" mod "5`

Comparing with `A^B" mod "C`

We get `A=3,B=302,C=5`

Step 1: Divide B into powers of 2 by writing it in binary

`302=100101110` in binary

`302=2^1+2^2+2^3+2^5+2^8`

`302=2+4+8+32+256`

`3^302" mod "5=3^((2+4+8+32+256))" mod "5`

`3^302" mod "5=(3^2*3^4*3^8*3^32*3^256)" mod "5`


Step 2: Calculate mod C of the powers of two <= B

`3^1" mod "5=3" mod "5=3`

`3^2" mod "5=(3^1*3^1)" mod "5=(3^1" mod "5*3^1" mod "5)" mod "5=(3*3)" mod "5=9" mod "5=4`

`3^4" mod "5=(3^2*3^2)" mod "5=(3^2" mod "5*3^2" mod "5)" mod "5=(4*4)" mod "5=16" mod "5=1`

`3^8" mod "5=(3^4*3^4)" mod "5=(3^4" mod "5*3^4" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`

`3^16" mod "5=(3^8*3^8)" mod "5=(3^8" mod "5*3^8" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`

`3^32" mod "5=(3^16*3^16)" mod "5=(3^16" mod "5*3^16" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`

`3^64" mod "5=(3^32*3^32)" mod "5=(3^32" mod "5*3^32" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`

`3^128" mod "5=(3^64*3^64)" mod "5=(3^64" mod "5*3^64" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`

`3^256" mod "5=(3^128*3^128)" mod "5=(3^128" mod "5*3^128" mod "5)" mod "5=(1*1)" mod "5=1" mod "5=1`


Step 3: Use modular multiplication properties to combine the calculated mod C values

`3^302" mod "5`

`=(3^2*3^4*3^8*3^32*3^256)" mod "5`

`=(3^2" mod "5*3^4" mod "5*3^8" mod "5*3^32" mod "5*3^256" mod "5)" mod "5`

`=(4*1*1*1*1)" mod "5`

`=4" mod "5`

`=4`

`:.3^302" mod "5=4`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Modulo
(Previous method)
2. Example-2 : `19^24 mod 21`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.