3. Find Ratio of line joining AB and is divided by P example ( Enter your problem )
  1. Find the ratio in which the point P (3/4, 5/12) divides the line segment joining the points A(1/2, 3/2) and B(2, -5)
  2. Point that divides the line joining A(-4, 1) and B(17, 10) in the ratio 1 : 2
  3. In what ratio does the x-axis divide the join of A(2, -3) and B (5, 6)
  4. Find the ratio in which the point P(x,2) divides the line segment joining the points B(4,-3) and A(12,5)? Also find the value of x
Other related methods
  1. Distance, Slope of two points
  2. Points are Collinear or Triangle or Quadrilateral form
  3. Find Ratio of line joining AB and is divided by P
  4. Find Midpoint or Trisection points or equidistant points on X-Y axis
  5. Find Centroid, Circumcenter, Area of a triangle
  6. Find the equation of a line using slope, point, X-intercept, Y-intercept
  7. Find Slope, X-intercept, Y-intercept of a line
  8. Find the equation of a line passing through point of intersection of two lines and slope or a point
  9. Find the equation of a line passing through a point and parallel or perpendicular to Line-2 or point-2 and point-3
  10. Find the equation of a line passing through point of intersection of Line-1, Line-2 and parallel or perpendicular to Line-3
  11. For two lines, find Angle, intersection point and determine if parallel or perpendicular lines
  12. Reflection of points about x-axis, y-axis, origin

3. In what ratio does the x-axis divide the join of A(2, -3) and B (5, 6)
(Previous example)
4. Find Midpoint or Trisection points or equidistant points on X-Y axis
(Next method)

4. Find the ratio in which the point P(x,2) divides the line segment joining the points B(4,-3) and A(12,5)? Also find the value of x





1. Find the ratio in which the point `P(x,2)` divides the line segment joining the points `A(12,5)` and `B(4,-3)`? Also find the value of x.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(x,2)` divides the line segment joining the points `A(12,5)` and `B(4,-3)` in the ratio `m:n`

The given points are `A(12,5),B(4,-3)`

`:. x_1=12,y_1=5,x_2=4,y_2=-3`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(x,2)=((m(4)+n(12))/(m+n),(m(-3)+n(5))/(m+n))`

`:. (m(-3)+n(5))/(m+n)=2`

`:. -3m+5n=2(m+n)`

`:. -3m+5n=2m+2n`

`:. -3m-2m=2n-5n`

`:. -5m=-3n`

`:. 5m=3n`

`:. m/n=(3)/(5)`

:. The point divides the line joining `A(12,5)` and `B(4,-3)` in the ratio `3:5`

Putting `m=3,n=5`, we get the coordinates of point P

`x=(mx_2+nx_1)/(m+n)`

`=(3*4+5*12)/(3+5)`

`=(12+60)/(8)`

`=(72)/(8)`

`=9`

Thus, the value of x is `9`



Method-2 : considering the ratio `k:1`

Let the point `P(x,2)` divides the line segment joining the points `A(12,5)` and `B(4,-3)` in the ratio `k:1`

The given points are `A(12,5),B(4,-3)`

`:. x_1=12,y_1=5,x_2=4,y_2=-3`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(x,2)=((k(4)+(12))/(k+1),(k(-3)+(5))/(k+1))`

`:. (k(-3)+(5))/(k+1)=2`

`:. -3k+5=2(k+1)`

`:. -3k+5=2k+2`

`:. -3k-2k=2-5`

`:. -5k=-3`

`:. 5k=3`

`:. k=(3)/(5)`

:. The point divides the line joining `A(12,5)` and `B(4,-3)` in the ratio `3:5`

Putting `k=3/5`, we get the coordinates of point P

`x=(kx_2+x_1)/(k+1)`

`=(3/5*4+12)/(3/5+1)`

`=(3*4+12*5)/(3+5)`

`=(12+60)/(8)`

`=(72)/(8)`

`=9`

Thus, the value of x is `9`






2. Find the ratio in which the point `P(11,y)` divides the line segment joining the points `A(15,5)` and `B(9,20)`? Also find the value of y.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(11,y)` divides the line segment joining the points `A(15,5)` and `B(9,20)` in the ratio `m:n`

The given points are `A(15,5),B(9,20)`

`:. x_1=15,y_1=5,x_2=9,y_2=20`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(11,y)=((m(9)+n(15))/(m+n),(m(20)+n(5))/(m+n))`

`:. (m(9)+n(15))/(m+n)=11`

`:. 9m+15n=11(m+n)`

`:. 9m+15n=11m+11n`

`:. 9m-11m=11n-15n`

`:. -2m=-4n`

`:. 2m=4n`

`:. m/n=(4)/(2)`

`:. m/n=(2)/(1)`

The point divides the line joining `A(15,5)` and `B(9,20)` in the ratio `2:1`

Putting `m=2,n=1`, we get the coordinates of point P

`y=(my_2+ny_1)/(m+n)`

`=(2*20+1*5)/(2+1)`

`=(40+5)/(3)`

`=(45)/(3)`

`=15`

Thus, the value of y is `15`



Method-2 : considering the ratio `k:1`

Let the point `P(11,y)` divides the line segment joining the points `A(15,5)` and `B(9,20)` in the ratio `k:1`

The given points are `A(15,5),B(9,20)`

`:. x_1=15,y_1=5,x_2=9,y_2=20`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(11,y)=((k(9)+(15))/(k+1),(k(20)+(5))/(k+1))`

`:. (k(9)+(15))/(k+1)=11`

`:. 9k+15=11(k+1)`

`:. 9k+15=11k+11`

`:. 9k-11k=11-15`

`:. -2k=-4`

`:. 2k=4`

`:. k=(4)/(2)`

`:. k=(2)/(1)`

The point divides the line joining `A(15,5)` and `B(9,20)` in the ratio `2:1`

Putting `k=2`, we get the coordinates of point P

`y=(ky_2+y_1)/(k+1)`

`=(2*20+5)/(2+1)`

`=(40+5)/(3)`

`=(45)/(3)`

`=15`

Thus, the value of y is `15`






3. Find the ratio in which the point `P(-3,y)` divides the line segment joining the points `A(-5,-4)` and `B(-2,3)`? Also find the value of y.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(-3,y)` divides the line segment joining the points `A(-5,-4)` and `B(-2,3)` in the ratio `m:n`

The given points are `A(-5,-4),B(-2,3)`

`:. x_1=-5,y_1=-4,x_2=-2,y_2=3`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(-3,y)=((m(-2)+n(-5))/(m+n),(m(3)+n(-4))/(m+n))`

`:. (m(-2)+n(-5))/(m+n)=-3`

`:. -2m-5n=-3(m+n)`

`:. -2m-5n=-3m-3n`

`:. -2m+3m=-3n+5n`

`:. m=2n`

`:. m/n=(2)/(1)`

The point divides the line joining `A(-5,-4)` and `B(-2,3)` in the ratio `2:1`

Putting `m=2,n=1`, we get the coordinates of point P

`y=(my_2+ny_1)/(m+n)`

`=(2*3+1*-4)/(2+1)`

`=(6-4)/(3)`

`=(2)/(3)`

Thus, the value of y is `2/3`



Method-2 : considering the ratio `k:1`

Let the point `P(-3,y)` divides the line segment joining the points `A(-5,-4)` and `B(-2,3)` in the ratio `k:1`

The given points are `A(-5,-4),B(-2,3)`

`:. x_1=-5,y_1=-4,x_2=-2,y_2=3`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(-3,y)=((k(-2)+(-5))/(k+1),(k(3)+(-4))/(k+1))`

`:. (k(-2)+(-5))/(k+1)=-3`

`:. -2k-5=-3(k+1)`

`:. -2k-5=-3k-3`

`:. -2k+3k=-3+5`

`:. k=2`

`:. k=(2)/(1)`

The point divides the line joining `A(-5,-4)` and `B(-2,3)` in the ratio `2:1`

Putting `k=2`, we get the coordinates of point P

`y=(ky_2+y_1)/(k+1)`

`=(2*3-4)/(2+1)`

`=(6-4)/(3)`

`=(2)/(3)`

Thus, the value of y is `2/3`






4. Find the ratio in which the point `P(-4,y)` divides the line segment joining the points `A(-6,10)` and `B(3,-8)`? Also find the value of y.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(-4,y)` divides the line segment joining the points `A(-6,10)` and `B(3,-8)` in the ratio `m:n`

The given points are `A(-6,10),B(3,-8)`

`:. x_1=-6,y_1=10,x_2=3,y_2=-8`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(-4,y)=((m(3)+n(-6))/(m+n),(m(-8)+n(10))/(m+n))`

`:. (m(3)+n(-6))/(m+n)=-4`

`:. 3m-6n=-4(m+n)`

`:. 3m-6n=-4m-4n`

`:. 3m+4m=-4n+6n`

`:. 7m=2n`

`:. m/n=(2)/(7)`

The point divides the line joining `A(-6,10)` and `B(3,-8)` in the ratio `2:7`

Putting `m=2,n=7`, we get the coordinates of point P

`y=(my_2+ny_1)/(m+n)`

`=(2*-8+7*10)/(2+7)`

`=(-16+70)/(9)`

`=(54)/(9)`

`=6`

Thus, the value of y is `6`



Method-2 : considering the ratio `k:1`

Let the point `P(-4,y)` divides the line segment joining the points `A(-6,10)` and `B(3,-8)` in the ratio `k:1`

The given points are `A(-6,10),B(3,-8)`

`:. x_1=-6,y_1=10,x_2=3,y_2=-8`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(-4,y)=((k(3)+(-6))/(k+1),(k(-8)+(10))/(k+1))`

`:. (k(3)+(-6))/(k+1)=-4`

`:. 3k-6=-4(k+1)`

`:. 3k-6=-4k-4`

`:. 3k+4k=-4+6`

`:. 7k=2`

`:. k=(2)/(7)`

The point divides the line joining `A(-6,10)` and `B(3,-8)` in the ratio `2:7`

Putting `k=2/7`, we get the coordinates of point P

`y=(ky_2+y_1)/(k+1)`

`=(2/7*-8+10)/(2/7+1)`

`=(2*-8+10*7)/(2+7)`

`=(-16+70)/(9)`

`=(54)/(9)`

`=6`

Thus, the value of y is `6`






5. Find the ratio in which the point `P(x,4)` divides the line segment joining the points `A(2,1)` and `B(7,6)`? Also find the value of x.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(x,4)` divides the line segment joining the points `A(2,1)` and `B(7,6)` in the ratio `m:n`

The given points are `A(2,1),B(7,6)`

`:. x_1=2,y_1=1,x_2=7,y_2=6`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(x,4)=((m(7)+n(2))/(m+n),(m(6)+n(1))/(m+n))`

`:. (m(6)+n(1))/(m+n)=4`

`:. 6m+n=4(m+n)`

`:. 6m+n=4m+4n`

`:. 6m-4m=4n-n`

`:. 2m=3n`

`:. m/n=(3)/(2)`

:. The point divides the line joining `A(2,1)` and `B(7,6)` in the ratio `3:2`

Putting `m=3,n=2`, we get the coordinates of point P

`x=(mx_2+nx_1)/(m+n)`

`=(3*7+2*2)/(3+2)`

`=(21+4)/(5)`

`=(25)/(5)`

`=5`

Thus, the value of x is `5`



Method-2 : considering the ratio `k:1`

Let the point `P(x,4)` divides the line segment joining the points `A(2,1)` and `B(7,6)` in the ratio `k:1`

The given points are `A(2,1),B(7,6)`

`:. x_1=2,y_1=1,x_2=7,y_2=6`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(x,4)=((k(7)+(2))/(k+1),(k(6)+(1))/(k+1))`

`:. (k(6)+(1))/(k+1)=4`

`:. 6k+1=4(k+1)`

`:. 6k+1=4k+4`

`:. 6k-4k=4-1`

`:. 2k=3`

`:. k=(3)/(2)`

:. The point divides the line joining `A(2,1)` and `B(7,6)` in the ratio `3:2`

Putting `k=3/2`, we get the coordinates of point P

`x=(kx_2+x_1)/(k+1)`

`=(3/2*7+2)/(3/2+1)`

`=(3*7+2*2)/(3+2)`

`=(21+4)/(5)`

`=(25)/(5)`

`=5`

Thus, the value of x is `5`






6. Find the ratio in which the point `P(x,0)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)`? Also find the value of x.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(x,0)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)` in the ratio `m:n`

The given points are `A(2,-4),B(-3,6)`

`:. x_1=2,y_1=-4,x_2=-3,y_2=6`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(x,0)=((m(-3)+n(2))/(m+n),(m(6)+n(-4))/(m+n))`

`:. (m(6)+n(-4))/(m+n)=0`

`:. 6m-4n=0`

`:. 6m=4n`

`:. m/n=(4)/(6)`

`:. m/n=(2)/(3)`

:. The point divides the line joining `A(2,-4)` and `B(-3,6)` in the ratio `2:3`

Putting `m=2,n=3`, we get the coordinates of point P

`x=(mx_2+nx_1)/(m+n)`

`=(2*-3+3*2)/(2+3)`

`=(-6+6)/(5)`

`=(0)/(5)`

Thus, the value of x is `0`



Method-2 : considering the ratio `k:1`

Let the point `P(x,0)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)` in the ratio `k:1`

The given points are `A(2,-4),B(-3,6)`

`:. x_1=2,y_1=-4,x_2=-3,y_2=6`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(x,0)=((k(-3)+(2))/(k+1),(k(6)+(-4))/(k+1))`

`:. (k(6)+(-4))/(k+1)=0`

`:. 6k-4=0`

`:. 6k=4`

`:. k=(4)/(6)`

`:. k=(2)/(3)`

:. The point divides the line joining `A(2,-4)` and `B(-3,6)` in the ratio `2:3`

Putting `k=2/3`, we get the coordinates of point P

`x=(kx_2+x_1)/(k+1)`

`=(2/3*-3+2)/(2/3+1)`

`=(2*-3+2*3)/(2+3)`

`=(-6+6)/(5)`

`=(0)/(5)`

Thus, the value of x is `0`






7. Find the ratio in which the point `P(0,y)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)`? Also find the value of y.

Solution:
Method-1 : considering the ratio `m:n`

Let the point `P(0,y)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)` in the ratio `m:n`

The given points are `A(2,-4),B(-3,6)`

`:. x_1=2,y_1=-4,x_2=-3,y_2=6`

Using section formula
`P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))`

`:.P(0,y)=((m(-3)+n(2))/(m+n),(m(6)+n(-4))/(m+n))`

`:. (m(-3)+n(2))/(m+n)=0`

`:. -3m+2n=0`

`:. -3m=-2n`

`:. 3m=2n`

`:. m/n=(2)/(3)`

The point divides the line joining `A(2,-4)` and `B(-3,6)` in the ratio `2:3`

Putting `m=2,n=3`, we get the coordinates of point P

`y=(my_2+ny_1)/(m+n)`

`=(2*6+3*-4)/(2+3)`

`=(12-12)/(5)`

`=(0)/(5)`

Thus, the value of y is `0`



Method-2 : considering the ratio `k:1`

Let the point `P(0,y)` divides the line segment joining the points `A(2,-4)` and `B(-3,6)` in the ratio `k:1`

The given points are `A(2,-4),B(-3,6)`

`:. x_1=2,y_1=-4,x_2=-3,y_2=6`

Using section formula
`P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))`

`:.P(0,y)=((k(-3)+(2))/(k+1),(k(6)+(-4))/(k+1))`

`:. (k(-3)+(2))/(k+1)=0`

`:. -3k+2=0`

`:. -3k=-2`

`:. 3k=2`

`:. k=(2)/(3)`

The point divides the line joining `A(2,-4)` and `B(-3,6)` in the ratio `2:3`

Putting `k=2/3`, we get the coordinates of point P

`y=(ky_2+y_1)/(k+1)`

`=(2/3*6-4)/(2/3+1)`

`=(2*6-4*3)/(2+3)`

`=(12-12)/(5)`

`=(0)/(5)`

Thus, the value of y is `0`








This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. In what ratio does the x-axis divide the join of A(2, -3) and B (5, 6)
(Previous example)
4. Find Midpoint or Trisection points or equidistant points on X-Y axis
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.