Home > Calculus calculators > Find maximum and minimum value of y example

2. Find maximum and minimum value of y example ( Enter your problem )
  1. Method & Example `y=x^3+6x^2-15x+7`
  2. Example `y=x^3-9x^2+24x+2`
  3. Example `y=4x^3+19x^2-14x+3`
  4. Example `y=3x^2+12x-15`
Other related methods
  1. Derivative
  2. Find maximum and minimum value of y

1. Method & Example `y=x^3+6x^2-15x+7`
(Previous example)
3. Example `y=4x^3+19x^2-14x+3`
(Next example)

2. Example `y=x^3-9x^2+24x+2`





Find maximum and minimum value of `y=x^3-9x^2+24x+2`

Solution:
Here, `y=x^3-9x^2+24x+2`

`:. (dy)/(dx)=``=x^(3)-9x^(2)+24x+2`

`d/(dx)(x^(3)-9x^(2)+24x+2)`

`=d/(dx)(x^(3))-d/(dx)(9x^(2))+d/(dx)(24x)+d/(dx)(2)`

`=3x^(2)-18x+24+0`

`=3x^(2)-18x+24`

For stationary values, `(dy)/(dx)=0`

`=>3x^(2)-18x+24=0`

`=>3(x^(2)-6x+8)=0`

`=>3(x^(2)-2x-4x+8)=0`

`=>3(x(x-2)+-4(x-2))=0`

`=>3(x-4)(x-2)=0`

`=>x-4=0" or "x-2=0`

`=>x=4" or "x=2`

`:.`At `x=4` and `x=2` we get stationary values.

Now, `(d^2y)/(dx^2)=``=3x^(2)-18x+24`

`d/(dx)(3x^(2)-18x+24)`

`=d/(dx)(3x^(2))-d/(dx)(18x)+d/(dx)(24)`

`=6x-18+0`

`=6x-18`

`((d^2y)/(dx^2))_(x=4)``=6*4-18`

`=24-18`

`=6` (positive)

`:.` At `x=4` the function is minimum

`((d^2y)/(dx^2))_(x=2)``=6*2-18`

`=12-18`

`=-6` (negative)

`:.` At `x=2` the function is maximum

Now, `y=x^3-9x^2+24x+2`

`"putting " x=4`

`y_(min)``=4^(3)-9*4^(2)+24*4+2`

`=64-144+96+2`

`=18`

`"putting " x=2`

`y_(max)``=2^(3)-9*2^(2)+24*2+2`

`=8-36+48+2`

`=22`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Method & Example `y=x^3+6x^2-15x+7`
(Previous example)
3. Example `y=4x^3+19x^2-14x+3`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.