| 
                             
                            
                                | 
                                    
                                    
                                 | 
                             
                            
                                | 
                    Home > Algebra calculators > If x+1/x=2 then find x-1/x, x^2+1/x^2, x^2-1/x^2, x^3+1/x^3, x^3-1/x^3, x^4+1/x^4, x^4-1/x^4 example
                                 | 
                             
                            
                                
                                 
                                 | 
                             
                            
                                
    
        
                                
                    
    
        | 
	
	1. If `x+1/x=2`, then find `x-1/x` example
( Enter your problem )
             | 
     
    
        | 
         | 
     
    
        
 
 1. If `x+1/x = 2`, then others
 
 
 
 1. If `x+1/x = 2`, then find `x^2+1/x^2`Solution:Here `x+1/x=2` Now, We know that `x^2+1/x^2=(x+1/x)^2-2` `:.x^2+1/x^2=2^2-2` `:.x^2+1/x^2=4-2` `:.x^2+1/x^2=2`  
2. If `x+1/x = 2`, then find `x^3+1/x^3`Solution:Here `x+1/x=2` Now, We know that `x^3+1/x^3=(x+1/x)^3-3(x+1/x)` `:.x^3+1/x^3=2^3-3*2` `:.x^3+1/x^3=8-6` `:.x^3+1/x^3=2`  
3. If `x+1/x = 2`, then find `x^4+1/x^4`Solution:Here `x+1/x=2` Now, We know that `x^2+1/x^2=(x+1/x)^2-2` `:.x^2+1/x^2=2^2-2` `:.x^2+1/x^2=4-2` `:.x^2+1/x^2=2` Now, We know that `(x^4+1/x^4)=(x^2+1/x^2)^2-2` `:.(x^4+1/x^4)=2^2-2` `:.(x^4+1/x^4)=4-2` `:.x^4+1/x^4=2`  
4. If `x+1/x = 2`, then find `x-1/x`
  Solution: Here `x+1/x=2`
 
  Now, We know that `(x-1/x)^2=(x+1/x)^2-4`
  `:.(x-1/x)^2=2^2-4`
  `:.(x-1/x)^2=4-4`
  `:.(x-1/x)^2=0`
  `:.x-1/x=0`
 
  
5. If `x+1/x = 2`, then find `x^2-1/x^2`
  Solution: Here `x+1/x=2`
 
  Now, We know that `(x-1/x)^2=(x+1/x)^2-4`
  `:.(x-1/x)^2=2^2-4`
  `:.(x-1/x)^2=4-4`
  `:.(x-1/x)^2=0`
  `:.x-1/x=0`
 
  Now, We know that `(x^2-1/x^2)=(x-1/x) (x+1/x)`
  `:.(x^2-1/x^2)=0*2`
  `:.x^2-1/x^2=0`
 
  
6. If `x+1/x = 2`, then find `x^3-1/x^3`
  Solution: Here `x+1/x=2`
 
  Now, We know that `(x-1/x)^2=(x+1/x)^2-4`
  `:.(x-1/x)^2=2^2-4`
  `:.(x-1/x)^2=4-4`
  `:.(x-1/x)^2=0`
  `:.x-1/x=0`
 
  Now, We know that `x^3-1/x^3=(x-1/x)^3+3(x-1/x)`
  `:.x^3-1/x^3=0^3+3*0`
  `:.x^3-1/x^3=0+0`
  `:.x^3-1/x^3=0`
 
  
7. If `x+1/x = 2`, then find `x^4-1/x^4`
  Solution: Here `x+1/x=2`
 
  Now, We know that `(x-1/x)^2=(x+1/x)^2-4`
  `:.(x-1/x)^2=2^2-4`
  `:.(x-1/x)^2=4-4`
  `:.(x-1/x)^2=0`
  `:.x-1/x=0`
 
  Now, We know that `(x^2-1/x^2)=(x-1/x) (x+1/x)`
  `:.(x^2-1/x^2)=0*2`
  `:.x^2-1/x^2=0`
 
  Now, We know that `x^2+1/x^2=(x+1/x)^2-2`
  `:.x^2+1/x^2=2^2-2`
  `:.x^2+1/x^2=4-2`
  `:.x^2+1/x^2=2`
 
  Now, We know that `(x^4-1/x^4)=(x^2-1/x^2) (x^2+1/x^2)`
  `:.(x^4-1/x^4)=0*2`
  `:.x^4-1/x^4=0`
 
  
 
  
 
 
 This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then  
 
  
  
         | 
     
 
         | 
     
                     
                                 | 
                             
                            
                                
                                     
                                    
 
                                    
                                    
  
                                 | 
                             
                            
                                
                                     
                                    
 
 
 
 
 
Share this solution or page with your friends.
 
                                 | 
                             
                            
                                | 
                                 
                                 | 
                             
                        
                     
                    
                 | 
                
             
             
                
                 |