Home > Algebra calculators > If x+1/x=2 then find x-1/x, x^2+1/x^2, x^2-1/x^2, x^3+1/x^3, x^3-1/x^3, x^4+1/x^4, x^4-1/x^4 example

1. If `x+1/x=2`, then find `x-1/x` example ( Enter your problem )
  1. If `x+1/x = 2`, then others
  2. If `x-1/x = 6`, then others
  3. If `x^2+1/x^2 = 2`, then others
Other related methods
  1. If `x+1/x = 2`, then find `x-1/x`
  2. If `x+y = 5` and `x-y = 1`, then find `x^2+y^2`
  3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
  4. If `x+y+z=1,xy+yz+zx=-1` and `xyz=-1` then find `x^3+y^3+z^3`

2. If `x-1/x = 6`, then others
(Next example)

1. If `x+1/x = 2`, then others





1. If `x+1/x = 2`, then find `x^2+1/x^2`

Solution:
Here `x+1/x=2`


Now, We know that
`x^2+1/x^2=(x+1/x)^2-2`

`:.x^2+1/x^2=2^2-2`

`:.x^2+1/x^2=4-2`

`:.x^2+1/x^2=2`


2. If `x+1/x = 2`, then find `x^3+1/x^3`

Solution:
Here `x+1/x=2`


Now, We know that
`x^3+1/x^3=(x+1/x)^3-3(x+1/x)`

`:.x^3+1/x^3=2^3-3*2`

`:.x^3+1/x^3=8-6`

`:.x^3+1/x^3=2`


3. If `x+1/x = 2`, then find `x^4+1/x^4`

Solution:
Here `x+1/x=2`


Now, We know that
`x^2+1/x^2=(x+1/x)^2-2`

`:.x^2+1/x^2=2^2-2`

`:.x^2+1/x^2=4-2`

`:.x^2+1/x^2=2`


Now, We know that
`(x^4+1/x^4)=(x^2+1/x^2)^2-2`

`:.(x^4+1/x^4)=2^2-2`

`:.(x^4+1/x^4)=4-2`

`:.x^4+1/x^4=2`


4. If `x+1/x = 2`, then find `x-1/x`

Solution:
Here `x+1/x=2`


Now, We know that
`(x-1/x)^2=(x+1/x)^2-4`

`:.(x-1/x)^2=2^2-4`

`:.(x-1/x)^2=4-4`

`:.(x-1/x)^2=0`

`:.x-1/x=0`


5. If `x+1/x = 2`, then find `x^2-1/x^2`

Solution:
Here `x+1/x=2`


Now, We know that
`(x-1/x)^2=(x+1/x)^2-4`

`:.(x-1/x)^2=2^2-4`

`:.(x-1/x)^2=4-4`

`:.(x-1/x)^2=0`

`:.x-1/x=0`


Now, We know that
`(x^2-1/x^2)=(x-1/x) (x+1/x)`

`:.(x^2-1/x^2)=0*2`

`:.x^2-1/x^2=0`


6. If `x+1/x = 2`, then find `x^3-1/x^3`

Solution:
Here `x+1/x=2`


Now, We know that
`(x-1/x)^2=(x+1/x)^2-4`

`:.(x-1/x)^2=2^2-4`

`:.(x-1/x)^2=4-4`

`:.(x-1/x)^2=0`

`:.x-1/x=0`


Now, We know that
`x^3-1/x^3=(x-1/x)^3+3(x-1/x)`

`:.x^3-1/x^3=0^3+3*0`

`:.x^3-1/x^3=0+0`

`:.x^3-1/x^3=0`


7. If `x+1/x = 2`, then find `x^4-1/x^4`

Solution:
Here `x+1/x=2`


Now, We know that
`(x-1/x)^2=(x+1/x)^2-4`

`:.(x-1/x)^2=2^2-4`

`:.(x-1/x)^2=4-4`

`:.(x-1/x)^2=0`

`:.x-1/x=0`


Now, We know that
`(x^2-1/x^2)=(x-1/x) (x+1/x)`

`:.(x^2-1/x^2)=0*2`

`:.x^2-1/x^2=0`


Now, We know that
`x^2+1/x^2=(x+1/x)^2-2`

`:.x^2+1/x^2=2^2-2`

`:.x^2+1/x^2=4-2`

`:.x^2+1/x^2=2`


Now, We know that
`(x^4-1/x^4)=(x^2-1/x^2) (x^2+1/x^2)`

`:.(x^4-1/x^4)=0*2`

`:.x^4-1/x^4=0`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. If `x-1/x = 6`, then others
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.