Home > Algebra calculators > If x+y+z=1, xy+yz+zx=-1 and xyz=-1 then find x^3+y^3+z^3 example

4. If `x+y+z=1,xy+yz+zx=-1` and `xyz=-1` then find `x^3+y^3+z^3` example ( Enter your problem )
  1. Examples
Other related methods
  1. If `x+1/x = 2`, then find `x-1/x`
  2. If `x+y = 5` and `x-y = 1`, then find `x^2+y^2`
  3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
  4. If `x+y+z=1,xy+yz+zx=-1` and `xyz=-1` then find `x^3+y^3+z^3`

3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
(Previous method)

1. Examples





1. If `x+y+z=1,xy+yz+zx=-1` and `xyz=-1`, then find `x^3+y^3+z^3`

Solution:
Here `x+y+z=1,xy+yz+zx=-1` and `xyz=-1`


We know that
`x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

`:.x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz`

`:.x^3+y^3+z^3=(1)(x^2+y^2+z^2-(-1))+3*(-1)`

`x^2+y^2+z^2=3`


Here `x+y+z=1` and `xy+yz+zx=-1`


We know that
`(x+y+z)^2=(x^2+y^2+z^2)+2(xy+yz+zx)`

`:.(x^2+y^2+z^2)=(x+y+z)^2-2(xy+yz+zx)`

`:.x^2+y^2+z^2=1^2-2*(-1)`

`:.x^2+y^2+z^2=1+2`

`:.x^2+y^2+z^2=3`


`:.x^3+y^3+z^3=1*(3+1)-3`

`:.x^3+y^3+z^3=1*4-3`

`:.x^3+y^3+z^3=4-3`

`:.x^3+y^3+z^3=1`


2. If `x+y+z=12,xy+yz+zx=47` and `x^3+y^3+z^3=216`, then find `xyz`

Solution:
Here `x+y+z=12,xy+yz+zx=47` and `x^3+y^3+z^3=216`


We know that
`x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

`x^2+y^2+z^2=50`


Here `x+y+z=12` and `xy+yz+zx=47`


We know that
`(x+y+z)^2=(x^2+y^2+z^2)+2(xy+yz+zx)`

`:.(x^2+y^2+z^2)=(x+y+z)^2-2(xy+yz+zx)`

`:.x^2+y^2+z^2=12^2-2*47`

`:.x^2+y^2+z^2=144-94`

`:.x^2+y^2+z^2=50`


`:.216-3xyz=(12)(50-47)`

`:.216-3xyz=12*3`

`:.216-3xyz=36`

`:.3xyz=216-36`

`:.3xyz=180`

`:.xyz=60`


3. If `x+y+z=10,xyz=15` and `x^3+y^3+z^3=75`, then find `x^2+y^2+z^2-xy-yz-zx`

Solution:
Here `x+y+z=10,xyz=15` and `x^3+y^3+z^3=75`

`x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

`:.75-3*15=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.75-45=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.30=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.(x^2+y^2+z^2-xy-yz-zx)=(30)/(10)`

`:.x^2+y^2+z^2-xy-yz-zx=3`


4. If `x+y+z=10,xyz=15` and `x^3+y^3+z^3=75`, then find `xy+yz+zx`

Solution:
Here `x+y+z=10,xyz=15` and `x^3+y^3+z^3=75`

`x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)`

`:.75-3*15=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.75-45=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.30=10*(x^2+y^2+z^2-xy-yz-zx)`

`:.(x^2+y^2+z^2-xy-yz-zx)=(30)/(10)`

`:.x^2+y^2+z^2-xy-yz-zx=3`


We know that
`(x+y+z)^2=(x^2+y^2+z^2)+2(xy+yz+zx)`

`:.(x^2+y^2+z^2)=(x+y+z)^2-2(xy+yz+zx)`

Substitute this in above equation
`:.(x+y+z)^2-2(xy+yz+zx)-xy-yz-zx=3`

`:.(10)^2-3(xy+yz+zx)=3`

`:.100-3(xy+yz+zx)=3`

`:.3(xy+yz+zx)=100-3`

`:.3(xy+yz+zx)=97`

`:.(xy+yz+zx)=97/3`

`:.xy+yz+zx=32.33`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. If `x+y+z = 1` and `x^2+y^2+z^2 = 29`, then find `xy+yz+zx`
(Previous method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.