3. Find the missing term in a perfect square trinomial example
( Enter your problem )
|
|
1. Missing middle term, first term, last term
1. Find Missing Middle Term of a given equation `x^2+4`
Solution: `x^2+4`
Here `"F.T. = x^2, L.T. = 4 and M.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. (M.T.)^2 = 4 * x^2 * 4=16x^2`
`:. M.T. = 4x`
So polynomial is `x^2+4x+4`
2. Find Missing Middle Term of a given equation `9x^2+16`
Solution: `9x^2+16`
Here `"F.T. = 9x^2, L.T. = 16 and M.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. (M.T.)^2 = 4 * 9x^2 * 16=576x^2`
`:. M.T. = 24x`
So polynomial is `9x^2+24x+16`
3. Find Missing Middle Term of a given equation `9x^2+y^2`
Solution: `9x^2+y^2`
Here `"F.T. = 9x^2, L.T. = y^2 and M.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. (M.T.)^2 = 4 * 9x^2 * y^2=36x^2y^2`
`:. M.T. = 6xy`
So polynomial is `9x^2+6xy+y^2`
4. Find Missing Last Term of a given equation `x^2+6x`
Solution: `x^2+6x`
Here `"F.T.=x^2, M.T. = 6x and L.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. L.T. = (M.T.)^2 / (4(F.T.))`
`= (6x)^2 / (4 * x^2)`
`= (6x * 6x) / (4 * x^2)`
`= 9`
`:. L.T.=9`
So polynomial is `x^2+6x+9`
5. Find Missing Last Term of a given equation `9x^2+6x`
Solution: `9x^2+6x`
Here `"F.T.=9x^2, M.T. = 6x and L.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. L.T. = (M.T.)^2 / (4(F.T.))`
`= (6x)^2 / (4 * 9x^2)`
`= (6x * 6x) / (4 * 9x^2)`
`= 1`
`:. L.T.=1`
So polynomial is `9x^2+6x+1`
6. Find Missing First Term of a given equation `6x+9`
Solution: `6x+9`
Here `"L.T.=9, M.T. = 6x and F.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. F.T. = (M.T.)^2 / (4(L.T.))`
`= (6x)^2 / (4 * 9)`
`= (6x * 6x) / (4 * 9)`
`= x^2`
`:. F.T.=x^2`
So polynomial is `x^2+6x+9`
7. Find Missing First Term of a given equation `6x+1`
Solution: `6x+1`
Here `"L.T.=1, M.T. = 6x and F.T. = ?`
`(M.T.)^2 = 4(F.T.)(L.T.)`
`:. F.T. = (M.T.)^2 / (4(L.T.))`
`= (6x)^2 / (4 * 1)`
`= (6x * 6x) / (4 * 1)`
`= 9x^2`
`:. F.T.=9x^2`
So polynomial is `9x^2+6x+1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|