Here `1-(1+x)^-48=39.4283x`
`:.-39.4283x+1-1/((1+x)^48)=0`
Let `f(x) = -39.4283x+1-1/((1+x)^48)`
`d/(dx)(-39.4283x+1-1/((1+x)^48))=-39.4283+48/((1+x)^49)`
`d/(dx)(-39.4283x+1-1/((1+x)^48))`
`=-d/(dx)(39.4283x)+d/(dx)(1)-d/(dx)(1/((1+x)^48))`
`d/(dx)(1/((1+x)^48))=-48/((1+x)^49)`
`d/(dx)(1/((1+x)^48))`
`=-48/((1+x)^49)*d/(dx)(1+x)`
`d/(dx)(1+x)=1`
`d/(dx)(1+x)`
`=d/(dx)(1)+d/(dx)(x)`
`=0+1`
`=1`
`=-48/((1+x)^49)*1`
`=-48/((1+x)^49)`
`=-39.4283+0-(-48/((1+x)^49))`
`=-39.4283+0+48/((1+x)^49)`
`=-39.4283+48/((1+x)^49)`
`:. f'(x) = -39.4283+48/((1+x)^49)`
`x_0 = 0.1`
`1^(st)` iteration :`f(x_0)=f(0.1)=-39.4283*0.1+1-1/((1+0.1)^48)=-2.953137`
`f'(x_0)=f'(0.1)=-39.4283+48/((1+0.1)^49)=-38.97852`
`x_1 = x_0 - f(x_0)/(f'(x_0))`
`x_1=0.1 - (-2.953137)/(-38.97852)`
`x_1=0.024237`
`2^(nd)` iteration :`f(x_1)=f(0.024237)=-39.4283*0.024237+1-1/((1+0.024237)^48)=-0.272413`
`f'(x_1)=f'(0.024237)=-39.4283+48/((1+0.024237)^49)=-24.581843`
`x_2 = x_1 - f(x_1)/(f'(x_1))`
`x_2=0.024237 - (-0.272413)/(-24.581843)`
`x_2=0.013155`
`3^(rd)` iteration :`f(x_2)=f(0.013155)=-39.4283*0.013155+1-1/((1+0.013155)^48)=-0.052697`
`f'(x_2)=f'(0.013155)=-39.4283+48/((1+0.013155)^49)=-14.128063`
`x_3 = x_2 - f(x_2)/(f'(x_2))`
`x_3=0.013155 - (-0.052697)/(-14.128063)`
`x_3=0.009425`
`4^(th)` iteration :`f(x_3)=f(0.009425)=-39.4283*0.009425+1-1/((1+0.009425)^48)=-0.00906`
`f'(x_3)=f'(0.009425)=-39.4283+48/((1+0.009425)^49)=-9.116324`
`x_4 = x_3 - f(x_3)/(f'(x_3))`
`x_4=0.009425 - (-0.00906)/(-9.116324)`
`x_4=0.008431`
`5^(th)` iteration :`f(x_4)=f(0.008431)=-39.4283*0.008431+1-1/((1+0.008431)^48)=-0.000739`
`f'(x_4)=f'(0.008431)=-39.4283+48/((1+0.008431)^49)=-7.617439`
`x_5 = x_4 - f(x_4)/(f'(x_4))`
`x_5=0.008431 - (-0.000739)/(-7.617439)`
`x_5=0.008334`
`6^(th)` iteration :`f(x_5)=f(0.008334)=-39.4283*0.008334+1-1/((1+0.008334)^48)=-0.000007`
`f'(x_5)=f'(0.008334)=-39.4283+48/((1+0.008334)^49)=-7.467189`
`x_6 = x_5 - f(x_5)/(f'(x_5))`
`x_6=0.008334 - (-0.000007)/(-7.467189)`
`x_6=0.008333`
Approximate root of the equation `-39.4283x+1-1/((1+x)^48)=0` using Newton Raphson method is `0.008333` (After 6 iterations)
`n` | `x_0` | `f(x_0)` | `f'(x_0)` | `x_1` | Update |
1 | 0.1 | -2.953137 | -38.97852 | 0.024237 | `x_0 = x_1` |
2 | 0.024237 | -0.272413 | -24.581843 | 0.013155 | `x_0 = x_1` |
3 | 0.013155 | -0.052697 | -14.128063 | 0.009425 | `x_0 = x_1` |
4 | 0.009425 | -0.00906 | -9.116324 | 0.008431 | `x_0 = x_1` |
5 | 0.008431 | -0.000739 | -7.617439 | 0.008334 | `x_0 = x_1` |
6 | 0.008334 | -0.000007 | -7.467189 | 0.008333 | `x_0 = x_1` |