Here `((1-(1+x)^-5)/x)=3.79`
`:.(1-1/((1+x)^5))/x-3.79=0`
Let `f(x) = (1-1/((1+x)^5))/x-3.79`
`d/(dx)((1-1/((1+x)^5))/x-3.79)=((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)`
`d/(dx)((1-1/((1+x)^5))/x-3.79)`
`=d/(dx)((1-1/((1+x)^5))/x)-d/(dx)(3.79)`
`d/(dx)((1-1/((1+x)^5))/x)=((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)`
`d/(dx)((1-1/((1+x)^5))/x)`
`=1-1/(1+5x+10x^2+10x^3+5x^4+x^5)`
`=((x) * d/(dx)(1-1/(1+5x+10x^2+10x^3+5x^4+x^5))-(1-1/(1+5x+10x^2+10x^3+5x^4+x^5)) * d/(dx)(x))/(x)^2`
`d/(dx)(1-1/(1+5x+10x^2+10x^3+5x^4+x^5))=5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)`
`d/(dx)(1-1/(1+5x+10x^2+10x^3+5x^4+x^5))`
`=d/(dx)(1)-d/(dx)(1/(1+5x+10x^2+10x^3+5x^4+x^5))`
`d/(dx)(1/(1+5x+10x^2+10x^3+5x^4+x^5))=-5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)`
`d/(dx)(1/(1+5x+10x^2+10x^3+5x^4+x^5))`
`=-1/((1+5x+10x^2+10x^3+5x^4+x^5)^2)*d/(dx)(1+5x+10x^2+10x^3+5x^4+x^5)`
`d/(dx)(1+5x+10x^2+10x^3+5x^4+x^5)=5+20x+30x^2+20x^3+5x^4`
`d/(dx)(1+5x+10x^2+10x^3+5x^4+x^5)`
`=d/(dx)(1)+d/(dx)(5x)+d/(dx)(10x^2)+d/(dx)(10x^3)+d/(dx)(5x^4)+d/(dx)(x^5)`
`=0+5+20x+30x^2+20x^3+5x^4`
`=5+20x+30x^2+20x^3+5x^4`
`=-1/((1+5x+10x^2+10x^3+5x^4+x^5)^2)*5+20x+30x^2+20x^3+5x^4`
`=-5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)`
`=0-(-5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2))`
`=5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)`
`=((x) * (5/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2))-(1-1/(1+5x+10x^2+10x^3+5x^4+x^5)) * (1))/(x^2)`
`=((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)`
`=(((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2))-0`
`=((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)-0`
`=((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)`
`:. f'(x) = ((5x)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^2)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(30x^3)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(20x^4)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)+(5x^5)/((1+5x+10x^2+10x^3+5x^4+x^5)^2)-1+1/(1+5x+10x^2+10x^3+5x^4+x^5))/(x^2)`
`x_0 = 0.1`
`1^(st)` iteration :`f(x_0)=f(0.1)=(1-1/((1+0.1)^5))/0.1-3.79=0.000787`
`f'(x_0)=f'(0.1)=((5*0.1)/((1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5)^2)+(20*0.1^2)/((1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5)^2)+(30*0.1^3)/((1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5)^2)+(20*0.1^4)/((1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5)^2)+(5*0.1^5)/((1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5)^2)-1+1/(1+5*0.1+10*0.1^2+10*0.1^3+5*0.1^4+0.1^5))/(0.1^2)=-9.684171`
`x_1 = x_0 - f(x_0)/(f'(x_0))`
`x_1=0.1 - (0.000787)/(-9.684171)`
`x_1=0.100081`
`2^(nd)` iteration :`f(x_1)=f(0.100081)=(1-1/((1+0.100081)^5))/0.100081-3.79=0`
`f'(x_1)=f'(0.100081)=((5*0.100081)/((1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5)^2)+(20*0.100081^2)/((1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5)^2)+(30*0.100081^3)/((1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5)^2)+(20*0.100081^4)/((1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5)^2)+(5*0.100081^5)/((1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5)^2)-1+1/(1+5*0.100081+10*0.100081^2+10*0.100081^3+5*0.100081^4+0.100081^5))/(0.100081^2)=-9.680944`
`x_2 = x_1 - f(x_1)/(f'(x_1))`
`x_2=0.100081 - (0)/(-9.680944)`
`x_2=0.100081`
Approximate root of the equation `(1-1/((1+x)^5))/x-3.79=0` using Newton Raphson method is `0.100081` (After 2 iterations)
`n` | `x_0` | `f(x_0)` | `f'(x_0)` | `x_1` | Update |
1 | 0.1 | 0.000787 | -9.684171 | 0.100081 | `x_0 = x_1` |
2 | 0.100081 | 0 | -9.680944 | 0.100081 | `x_0 = x_1` |