Here `((1-(1+x)^-3)/x)*(1+x)=2.74`
`:.((1-1/((1+x)^3))/x)(1+x)-2.74=0`
Let `f(x) = ((1-1/((1+x)^3))/x)(1+x)-2.74`
`d/(dx)(((1-1/((1+x)^3))/x)(1+x)-2.74)=((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)`
`d/(dx)(((1-1/((1+x)^3))(1+x))/x-2.74)`
`=d/(dx)(((1-1/((1+x)^3))(1+x))/x)-d/(dx)(2.74)`
`d/(dx)(((1-1/((1+x)^3))(1+x))/x)=((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)`
`d/(dx)(((1-1/((1+x)^3))(1+x))/x)`
`=((x) * d/(dx)((1-1/((1+x)^3))(1+x))-((1-1/((1+x)^3))(1+x)) * d/(dx)(x))/(x)^2`
`d/(dx)((1-1/((1+x)^3))(1+x))=3/((1+x)^3)+(1-1/((1+x)^3))`
`d/(dx)((1-1/((1+x)^3))(1+x))`
`=(d/(dx)(1-1/((1+x)^3)))(1+x)+(1-1/((1+x)^3))(d/(dx)(1+x))`
`d/(dx)(1-1/((1+x)^3))=3/((1+x)^4)`
`d/(dx)(1-1/((1+x)^3))`
`=d/(dx)(1)-d/(dx)(1/((1+x)^3))`
`d/(dx)(1/((1+x)^3))=-3/((1+x)^4)`
`d/(dx)(1/((1+x)^3))`
`=-3/((1+x)^4)*d/(dx)(1+x)`
`d/(dx)(1+x)=1`
`d/(dx)(1+x)`
`=d/(dx)(1)+d/(dx)(x)`
`=0+1`
`=1`
`=-3/((1+x)^4)*1`
`=-3/((1+x)^4)`
`=0-(-3/((1+x)^4))`
`=3/((1+x)^4)`
`d/(dx)(1+x)=1`
`d/(dx)(1+x)`
`=d/(dx)(1)+d/(dx)(x)`
`=0+1`
`=1`
`=(3/((1+x)^4))(1+x)+(1-1/((1+x)^3))*1`
`=3/((1+x)^3)+(1-1/((1+x)^3))`
`=((x) * (3/((1+x)^3)+(1-1/((1+x)^3)))-((1-1/((1+x)^3))(1+x)) * (1))/(x^2)`
`=((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)`
`=(((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2))-0`
`=((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)-0`
`=((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)`
`:. f'(x) = ((3x)/((1+x)^3)+x(1-1/((1+x)^3))-(1-1/((1+x)^3))(1+x))/(x^2)`
`x_0 = 0.1`
`1^(st)` iteration :`f(x_0)=f(0.1)=((1-1/((1+0.1)^3))/0.1)(1+0.1)-2.74=-0.004463`
`f'(x_0)=f'(0.1)=((3*0.1)/((1+0.1)^3)+0.1(1-1/((1+0.1)^3))-(1-1/((1+0.1)^3))(1+0.1))/(0.1^2)=-2.329076`
`x_1 = x_0 - f(x_0)/(f'(x_0))`
`x_1=0.1 - (-0.004463)/(-2.329076)`
`x_1=0.098084`
`2^(nd)` iteration :`f(x_1)=f(0.098084)=((1-1/((1+0.098084)^3))/0.098084)(1+0.098084)-2.74=0.00001`
`f'(x_1)=f'(0.098084)=((3*0.098084)/((1+0.098084)^3)+0.098084(1-1/((1+0.098084)^3))-(1-1/((1+0.098084)^3))(1+0.098084))/(0.098084^2)=-2.339843`
`x_2 = x_1 - f(x_1)/(f'(x_1))`
`x_2=0.098084 - (0.00001)/(-2.339843)`
`x_2=0.098088`
Approximate root of the equation `((1-1/((1+x)^3))/x)(1+x)-2.74=0` using Newton Raphson method is `0.098088` (After 2 iterations)
`n` | `x_0` | `f(x_0)` | `f'(x_0)` | `x_1` | Update |
1 | 0.1 | -0.004463 | -2.329076 | 0.098084 | `x_0 = x_1` |
2 | 0.098084 | 0.00001 | -2.339843 | 0.098088 | `x_0 = x_1` |