Home > Algebra calculators > axis symmetry of a parabola example

7. Symmetry of a function example ( Enter your problem )
  1. `y=x^2+3x-4` Example-1
  2. `y=(x+2)^2-9` Example-2
  3. `y=3x^2+6x-1` Example-3
  4. `y=3(x+1)^2-4` Example-4
Other related methods
  1. Domain of a function
  2. Range of a function
  3. Inverse of a function
  4. Properties of a function
  5. Parabola Vertex of a function
  6. Parabola focus
  7. axis symmetry of a parabola
  8. Parabola Directrix
  9. Intercept of a function
  10. Parity of a function
  11. Asymptotes of a function

6. Parabola focus
(Previous method)
2. `y=(x+2)^2-9` Example-2
(Next example)

1. `y=x^2+3x-4` Example-1





1. `y=x^2+3x-4`, find axis symmetry of a parabola

Solution:
`y=x^2+3x-4`

1. Symmetry :
Axis of symmetry is the line that passes through the vertex and the focus
`x=h=-3/2`

2. Graph :
some extra points to plot the graph
`y=f(x)=x^2+3x-4`

`f(-5)=(-5)^2+3(-5)-4=25-15-4=6`

`f(-4)=(-4)^2+3(-4)-4=16-12-4=0`

`f(-3)=(-3)^2+3(-3)-4=9-9-4=-4`

`f(-2)=(-2)^2+3(-2)-4=4-6-4=-6`

`f(-1)=(-1)^2+3(-1)-4=1-3-4=-6`

`f(0)=(0)^2+3(0)-4=0-4=-4`

`f(1)=(1)^2+3(1)-4=1+3-4=0`

`f(2)=(2)^2+3(2)-4=4+6-4=6`

`f(3)=(3)^2+3(3)-4=9+9-4=14`

graph



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Parabola focus
(Previous method)
2. `y=(x+2)^2-9` Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.