Home > Algebra calculators > axis symmetry of a parabola example

7. Symmetry of a function example ( Enter your problem )
  1. y=x^2+3x-4 Example-1
  2. y=(x+2)^2-9 Example-2
  3. y=3x^2+6x-1 Example-3
  4. y=3(x+1)^2-4 Example-4
Other related methods
  1. Domain of a function
  2. Range of a function
  3. Inverse of a function
  4. Properties of a function
  5. Parabola Vertex of a function
  6. Parabola focus
  7. axis symmetry of a parabola
  8. Parabola Directrix
  9. Intercept of a function
  10. Parity of a function
  11. Asymptotes of a function

3. y=3x^2+6x-1 Example-3
(Previous example)
8. Parabola Directrix
(Next method)

4. y=3(x+1)^2-4 Example-4





y=3(x+1)^2-4, find axis symmetry of a parabola

Solution:
y=3(x+1)^2-4

1. Vertex :
:. y=3(x-(-1))^2+(-4)

Now compare with y=a(x-h)^2+k, we get

a=3,h=-1,k=-4

Vertex =(h,k)=(-1,-4)

If a<0 then the vertex is a maximum value

If a>0 then the vertex is a minimum value

Here a=3>0

So minimum Vertex = (h,k)=(-1,-4)

2. Symmetry :
Axis of symmetry is the line that passes through the vertex and the focus
x=h=-1

3. Graph :
some extra points to plot the graph
y=f(x)=3(x+1)^2-4

f(-5)=3(-5+1)^2-4=3(16)-4=44

f(-4)=3(-4+1)^2-4=3(9)-4=23

f(-3)=3(-3+1)^2-4=3(4)-4=8

f(-2)=3(-2+1)^2-4=3(1)-4=-1

f(-1)=3(-1+1)^2-4=3(0)-4=-4

f(0)=3(0+1)^2-4=3(1)-4=-1

f(1)=3(1+1)^2-4=3(4)-4=8

f(2)=3(2+1)^2-4=3(9)-4=23

f(3)=3(3+1)^2-4=3(16)-4=44

graph



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. y=3x^2+6x-1 Example-3
(Previous example)
8. Parabola Directrix
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.