Home > Statistical Methods calculators > Unweighted Index Number example

2. Unweighted Index Number example ( Enter your problem )
  1. index number using Simple Aggregative Method Example-1
  2. index number using Simple Average of Price Relative Method (using the arithmetic mean) Example-2
  3. index number using Simple Average of Price Relative Method (using the geometric mean) Example-3
  4. Example-4
  5. Example-5
Other related methods
  1. Fixed base method and Chain base method
  2. Unweighted Index Number
  3. Fixed base method and Chain base method for bivariate grouped data
  4. Conversion of fixed base index numbers into chain base index numbers
  5. Weighted Index Numbers
  6. Weighted average method
  7. Cost of living Index number

3. index number using Simple Average of Price Relative Method (using the geometric mean) Example-3
(Previous example)
5. Example-5
(Next example)

4. Example-4





Find index number using Simple Aggregative Method, Simple Average of Price Relative Method (using the arithmetic mean), Simple Average of Price Relative Method (using the geometric mean)
ItemPrice
`p_0`
Price
`p_1`
Bread2528
Eggs3035
Ghee375380
Milk3640
Cheese440500
Butter265300


Solution:
ItemPrice
`p_0`
Price
`p_1`
Price relative
`P=p_1/p_0 xx 100`
`log(P)`
Bread2528`28/25 xx 100=112`2.0492
Eggs3035`35/30 xx 100=116.67`2.0669
Ghee375380`380/375 xx 100=101.33`2.0058
Milk3640`40/36 xx 100=111.11`2.0458
Cheese440500`500/440 xx 100=113.64`2.0555
Butter265300`300/265 xx 100=113.21`2.0539
---------------
Total`sum p_0=1171``sum p_1=1283``sum P=667.96``sum log(P)=12.2771`


1. Simple aggregative method :

`I=(sum p_1)/(sum p_0)xx100`

`=(1283)/(1171)xx100`

`=109.56`

Thus, there is a rise of `(109.56-100)=9.56%` in prices



2. Average of price relative method (using the arithmetic mean) :

`I=1/n(sum P)`

`=1/6(667.96)`

`=111.33`

Thus, there is a rise of `(111.33-100)=11.33%` in prices



3. Average of price relative method (using the geometric mean) :

`I=antilog((sum log(P))/(n))`

`=antilog(12.2771/6)`

`=antilog(2.0462)`

`=111.22`

Thus, there is a rise of `(111.22-100)=11.22%` in prices


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. index number using Simple Average of Price Relative Method (using the geometric mean) Example-3
(Previous example)
5. Example-5
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.