Home > Statistical Methods calculators > Weighted average method example

6. Weighted average method example ( Enter your problem )
  1. index number using Weighted aggregate method Example-1
  2. index number using Weighted average of price relatives method Example-2
Other related methods
  1. Fixed base method and Chain base method
  2. Unweighted Index Number
  3. Fixed base method and Chain base method for bivariate grouped data
  4. Conversion of fixed base index numbers into chain base index numbers
  5. Weighted Index Numbers
  6. Weighted average method
  7. Cost of living Index number

1. index number using Weighted aggregate method Example-1
(Previous example)
7. Cost of living Index number
(Next method)

2. index number using Weighted average of price relatives method Example-2





1. Find index number using Weighted average of price relatives method
ItemQuantityPrice0Price1
A351618
B254045
C2060120
D108090
E203045
F152835


Solution:
Weighted average of price relatives method :
ItemWeight
`W`
Price
`p_0`
Price
`p_1`
Price relatives
`I=p_1/p_0 xx 100`
`IW`
A351618`18/16 xx 100=112.5`3937.5
B254045`45/40 xx 100=112.5`2812.5
C2060120`120/60 xx 100=200`4000
D108090`90/80 xx 100=112.5`1125
E203045`45/30 xx 100=150`3000
F152835`35/28 xx 100=125`1875
------------------
Total`sum W=125``sum IW=16750`


Index number by weighted average of price relatives method

`I=(sum IW)/(sum W)`

`=(16750)/(125)`

`=134`

Thus, there is a rise of `(134-100)=34%` in prices
2. Find index number using Weighted average of price relatives method
ItemQuantityPrice0Price1
A40160200
B25400600
C55070
D201018
E1023


Solution:
Weighted average of price relatives method :
ItemWeight
`W`
Price
`p_0`
Price
`p_1`
Price relatives
`I=p_1/p_0 xx 100`
`IW`
A40160200`200/160 xx 100=125`5000
B25400600`600/400 xx 100=150`3750
C55070`70/50 xx 100=140`700
D201018`18/10 xx 100=180`3600
E1023`3/2 xx 100=150`1500
------------------
Total`sum W=100``sum IW=14550`


Index number by weighted average of price relatives method

`I=(sum IW)/(sum W)`

`=(14550)/(100)`

`=145.5`

Thus, there is a rise of `(145.5-100)=45.5%` in prices
3. Find index number using Weighted average of price relatives method
ItemQuantityPrice0Price1
A4022.50
B2033.25
C101.51.75


Solution:
Weighted average of price relatives method :
ItemWeight
`W`
Price
`p_0`
Price
`p_1`
Price relatives
`I=p_1/p_0 xx 100`
`IW`
A4022.5`2.5/2 xx 100=125`5000
B2033.25`3.25/3 xx 100=108.3333`2166.6667
C101.51.75`1.75/1.5 xx 100=116.6667`1166.6667
------------------
Total`sum W=70``sum IW=8333.3333`


Index number by weighted average of price relatives method

`I=(sum IW)/(sum W)`

`=(8333.3333)/(70)`

`=119.05`

Thus, there is a rise of `(119.05-100)=19.05%` in prices


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. index number using Weighted aggregate method Example-1
(Previous example)
7. Cost of living Index number
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.