Home > Statistical Methods calculators > Weighted Index Numbers example

5. Weighted Index Numbers example ( Enter your problem )
  1. Laspeyre's index number Example-1
  2. Paasche's index number Example-2
  3. Fisher's index number Example-3
  4. Marshall Edgeworth's index numberExample-4
  5. Dorbish-Bowley's index number Example-5
  6. Kelly's index number Example-6
  7. Walsh's index number Example-7
Other related methods
  1. Fixed base method and Chain base method
  2. Unweighted Index Number
  3. Fixed base method and Chain base method for bivariate grouped data
  4. Conversion of fixed base index numbers into chain base index numbers
  5. Weighted Index Numbers
  6. Weighted average method
  7. Cost of living Index number

6. Kelly's index number Example-6
(Previous example)
6. Weighted average method
(Next method)

7. Walsh's index number Example-7





1. Find Walsh's index number
ItemPrice0Quantity0Price1Quantity1
Rice391401.5
Milk40124410
Bread452501.5
Banana302361.5


Solution:
Item`p_0``q_0``p_1``q_1``q_w=sqrt(q_0xxq_1)``p_0q_w``p_1q_w`
Rice391401.51.224747.76548.9898
Milk4012441010.9545438.178481.9959
Bread452501.51.732177.942386.6025
Banana302361.51.732151.961562.3538
------------------------
Total`615.8469``679.942`


1. By Walsh's Method, price index number

`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`

`=(679.942)/(615.8469) xx 100`

`=110.41`

Thus, there is a rise of `(110.41-100)=10.41%` in prices
2. Find Walsh's index number
ItemPrice0Quantity0Price1Quantity1
A10201222
B816818
C510611
D4748


Solution:
Item`p_0``q_0``p_1``q_1``q_w=sqrt(q_0xxq_1)``p_0q_w``p_1q_w`
A1020122220.9762209.7618251.7141
B81681816.9706135.7645135.7645
C51061110.488152.440462.9285
D47487.483329.933329.9333
------------------------
Total`427.9``480.3404`


1. By Walsh's Method, price index number

`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`

`=(480.3404)/(427.9) xx 100`

`=112.26`

Thus, there is a rise of `(112.26-100)=12.26%` in prices
3. Find Walsh's index number
ItemPrice0Quantity0Price1Quantity1
A325528
B150360
C230130
D515612


Solution:
Item`p_0``q_0``p_1``q_1``q_w=sqrt(q_0xxq_1)``p_0q_w``p_1q_w`
A32552826.457579.3725132.2876
B15036054.772354.7723164.3168
C230130306030
D51561213.416467.08280.4984
------------------------
Total`261.2268``407.1028`


1. By Walsh's Method, price index number

`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`

`=(407.1028)/(261.2268) xx 100`

`=155.84`

Thus, there is a rise of `(155.84-100)=55.84%` in prices


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Kelly's index number Example-6
(Previous example)
6. Weighted average method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.