1. Find Walsh's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
Rice | 39 | 1 | 40 | 1.5 |
Milk | 40 | 12 | 44 | 10 |
Bread | 45 | 2 | 50 | 1.5 |
Banana | 30 | 2 | 36 | 1.5 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `q_w=sqrt(q_0xxq_1)` | `p_0q_w` | `p_1q_w` |
Rice | 39 | 1 | 40 | 1.5 | 1.2247 | 47.765 | 48.9898 |
Milk | 40 | 12 | 44 | 10 | 10.9545 | 438.178 | 481.9959 |
Bread | 45 | 2 | 50 | 1.5 | 1.7321 | 77.9423 | 86.6025 |
Banana | 30 | 2 | 36 | 1.5 | 1.7321 | 51.9615 | 62.3538 |
--- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | | `615.8469` | `679.942` |
1. By Walsh's Method, price index number
`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`
`=(679.942)/(615.8469) xx 100`
`=110.41`
Thus, there is a rise of `(110.41-100)=10.41%` in prices
2. Find Walsh's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
A | 10 | 20 | 12 | 22 |
B | 8 | 16 | 8 | 18 |
C | 5 | 10 | 6 | 11 |
D | 4 | 7 | 4 | 8 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `q_w=sqrt(q_0xxq_1)` | `p_0q_w` | `p_1q_w` |
A | 10 | 20 | 12 | 22 | 20.9762 | 209.7618 | 251.7141 |
B | 8 | 16 | 8 | 18 | 16.9706 | 135.7645 | 135.7645 |
C | 5 | 10 | 6 | 11 | 10.4881 | 52.4404 | 62.9285 |
D | 4 | 7 | 4 | 8 | 7.4833 | 29.9333 | 29.9333 |
--- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | | `427.9` | `480.3404` |
1. By Walsh's Method, price index number
`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`
`=(480.3404)/(427.9) xx 100`
`=112.26`
Thus, there is a rise of `(112.26-100)=12.26%` in prices
3. Find Walsh's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
A | 3 | 25 | 5 | 28 |
B | 1 | 50 | 3 | 60 |
C | 2 | 30 | 1 | 30 |
D | 5 | 15 | 6 | 12 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `q_w=sqrt(q_0xxq_1)` | `p_0q_w` | `p_1q_w` |
A | 3 | 25 | 5 | 28 | 26.4575 | 79.3725 | 132.2876 |
B | 1 | 50 | 3 | 60 | 54.7723 | 54.7723 | 164.3168 |
C | 2 | 30 | 1 | 30 | 30 | 60 | 30 |
D | 5 | 15 | 6 | 12 | 13.4164 | 67.082 | 80.4984 |
--- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | | `261.2268` | `407.1028` |
1. By Walsh's Method, price index number
`I_W=(sum p_1q_w)/(sum p_0q_w) xx 100`
`=(407.1028)/(261.2268) xx 100`
`=155.84`
Thus, there is a rise of `(155.84-100)=55.84%` in prices
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then