1. Karnaugh Map method (Kmap) example
( Enter your problem )
|
- Example-1 : Minterm = 0,1,2,5,6,7,8,9,10,14
- Example-2 : Minterm = 2,6,8,9,10,11,14,15
- Example-3 : Minterm = 2,3,5,7,8,10,12,13,15
- Example-4 : Minterm = 4,8,10,11,12,15
|
Other related methods
- Karnaugh Map method (Kmap)
- Quine-McCluskey method
|
|
4. Example-4 : Minterm = 4,8,10,11,12,15
Minterm = 4,8,10,11,12,15 DontCare = Variable = a,b,c,d using Karnaugh Map (Kmap solver)
Solution: Minterm = `sum m(4,8,10,11,12,15)`
Variable = a,b,c,d
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 0 0 | 0 1 | 0 3 | 0 2 | 01 | 1 4 | 0 5 | 0 7 | 0 6 | 11 | 1 12 | 0 13 | 1 15 | 0 14 | 10 | 1 8 | 0 9 | 1 11 | 1 10 |
Group-1 : 2 Cell Grouping (8,10)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 0 0 | 0 1 | 0 3 | 0 2 | 01 | 1 4 | 0 5 | 0 7 | 0 6 | 11 | 1 12 | 0 13 | 1 15 | 0 14 | 10 | 1 8 | 0 9 | 1 11 | 1 10 |
Positions = 8,10 Simplified Expression = ab'd'
Group-2 : 2 Cell Grouping (11,15)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 0 0 | 0 1 | 0 3 | 0 2 | 01 | 1 4 | 0 5 | 0 7 | 0 6 | 11 | 1 12 | 0 13 | 1 15 | 0 14 | 10 | 1 8 | 0 9 | 1 11 | 1 10 |
Positions = 11,15 Simplified Expression = ab'd' + acd
Group-3 : 2 Cell Grouping (4,12)
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 0 0 | 0 1 | 0 3 | 0 2 | 01 | 1 4 | 0 5 | 0 7 | 0 6 | 11 | 1 12 | 0 13 | 1 15 | 0 14 | 10 | 1 8 | 0 9 | 1 11 | 1 10 |
Positions = 4,12 Simplified Expression = ab'd' + acd + bc'd'
Final Expression = ab'd' + acd + bc'd'
a,b\c,d | 00 | 01 | 11 | 10 | 00 | 0 0 | 0 1 | 0 3 | 0 2 | 01 | 1 4 | 0 5 | 0 7 | 0 6 | 11 | 1 12 | 0 13 | 1 15 | 0 14 | 10 | 1 8 | 0 9 | 1 11 | 1 10 |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|