Home > College Algebra calculators > Quine-McCluskey example

2. Quine-McCluskey method example ( Enter your problem )
  1. Example-1 : Minterm = 0,1,2,5,6,7,8,9,10,14
  2. Example-2 : Minterm = 2,6,8,9,10,11,14,15
  3. Example-3 : Minterm = 2,3,5,7,8,10,12,13,15
  4. Example-4 : Minterm = 4,8,10,11,12,15
Other related methods
  1. Karnaugh Map method (Kmap)
  2. Quine-McCluskey method

3. Example-3 : Minterm = 2,3,5,7,8,10,12,13,15
(Previous example)

4. Example-4 : Minterm = 4,8,10,11,12,15





Minterm = 4,8,10,11,12,15
DontCare =
Variable = a,b,c,d
using Quine-McCluskey


Solution:
Minterm = `sum m(4,8,10,11,12,15)`

Variable = a,b,c,d
1. min terms and their binary representations
Group A1
  
4  0100  `->`
8  1000  `->`
Group A2
  
10  1010  `->`
12  1100  `->`
Group A3
  
11  1011  `->`
Group A4
  
15  1111  `->`


2. merging of min term
Group B1
(A1,A2)
  
4,12  -100  ✓
8,10  10-0  ✓
8,12  1-00  ✓
Group B2
(A2,A3)
  
10,11  101-  ✓
Group B3
(A3,A4)
  
11,15  1-11  ✓

1. Prime implicant chart (ignore the don't cares)
PIs\Minterms4810111215a,b,c,d
4,12XX-100
8,10XX10-0
8,12XX1-00
10,11XX101-
11,15XX1-11

Column-4 has only single X, so essential PI (4,12) is -100. Now remove this PI Row and corresponding Minterm Column 4,12
Column-15 has only single X, so essential PI (11,15) is 1-11. Now remove this PI Row and corresponding Minterm Column 11,15

Extracted essential prime implicants : -100,1-11


2. Reduced Prime implicant chart
PIs\Minterms810a,b,c,d
8,10XX10-0
8,12X1-00
10,11X101-

(`1^(st)` Row) Row PI 8,10 has maximum(2) X, so essential PI (8,10) is 10-0. Now remove this PI Row and corresponding Minterm Column 8,10


Extracted essential prime implicants : 10-0


All extracted essential prime implicants : -100,1-11,10-0

Minimal Quine-McCluskey Expression = bc'd' + acd + ab'd'


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 : Minterm = 2,3,5,7,8,10,12,13,15
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.