Home > College Algebra calculators > Mathematical Logic, truth tables, logical equivalence example

Mathematical Logic, truth tables, logical equivalence example ( Enter your problem )
  1. Examples
Other related methods
  1. Definitions
  2. Laws of logical connectives
  3. Prepare the truth table
  4. logical validity of the argument

2. Laws of logical connectives
(Previous method)
4. logical validity of the argument
(Next method)

1. Examples





1. Prepare the truth table for Expression : p and (q or r)=(p and q) or (p and r)

Solution:
To prove `p^^(qvvr)=(p^^q)vv(p^^r)`, we havet to first prepare the following truth table

`(1)``(2)``(3)``(4)=(2)vv(3)``(5)=(1)^^(4)``(6)=(1)^^(2)``(7)=(1)^^(3)``(8)=(6)vv(7)`
`p``q``r``qvvr``p^^(qvvr)``p^^q``p^^r``(p^^q)vv(p^^r)`
TTT T `T=TvvT` T `T=T^^T` T `T=T^^T` T `T=T^^T` T `T=TvvT`
TTF T `T=TvvF` T `T=T^^T` T `T=T^^T` F `F=T^^F` T `T=TvvF`
TFT T `T=FvvT` T `T=T^^T` F `F=T^^F` T `T=T^^T` T `T=FvvT`
TFF F `F=FvvF` F `F=T^^F` F `F=T^^F` F `F=T^^F` F `F=FvvF`
FTT T `T=TvvT` F `F=F^^T` F `F=F^^T` F `F=F^^T` F `F=FvvF`
FTF T `T=TvvF` F `F=F^^T` F `F=F^^T` F `F=F^^F` F `F=FvvF`
FFT T `T=FvvT` F `F=F^^T` F `F=F^^F` F `F=F^^T` F `F=FvvF`
FFF F `F=FvvF` F `F=F^^F` F `F=F^^F` F `F=F^^F` F `F=FvvF`


from this table, we can say that columns (5) and (8) are identical.
`:. p^^(qvvr)=(p^^q)vv(p^^r)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Laws of logical connectives
(Previous method)
4. logical validity of the argument
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.