Home > College Algebra calculators > Truth table example

3. Truth table example ( Enter your problem )
  1. Examples
Other related methods
  1. Definitions of truth table
  2. Laws of logical connectives
  3. Truth table
  4. Valid or invalid argument in logic

2. Laws of logical connectives
(Previous method)
4. Valid or invalid argument in logic
(Next method)

1. Examples





1. Prepare the truth table for Expression : p and (q or r)=(p and q) or (p and r)

Solution:
To prove `p^^(qvvr)=(p^^q)vv(p^^r)`, we havet to first prepare the following truth table

`(1)``(2)``(3)``(4)=(2)vv(3)``(5)=(1)^^(4)``(6)=(1)^^(2)``(7)=(1)^^(3)``(8)=(6)vv(7)`
`p``q``r``qvvr``p^^(qvvr)``p^^q``p^^r``(p^^q)vv(p^^r)`
TTT T `T=TvvT` T `T=T^^T` T `T=T^^T` T `T=T^^T` T `T=TvvT`
TTF T `T=TvvF` T `T=T^^T` T `T=T^^T` F `F=T^^F` T `T=TvvF`
TFT T `T=FvvT` T `T=T^^T` F `F=T^^F` T `T=T^^T` T `T=FvvT`
TFF F `F=FvvF` F `F=T^^F` F `F=T^^F` F `F=T^^F` F `F=FvvF`
FTT T `T=TvvT` F `F=F^^T` F `F=F^^T` F `F=F^^T` F `F=FvvF`
FTF T `T=TvvF` F `F=F^^T` F `F=F^^T` F `F=F^^F` F `F=FvvF`
FFT T `T=FvvT` F `F=F^^T` F `F=F^^F` F `F=F^^T` F `F=FvvF`
FFF F `F=FvvF` F `F=F^^F` F `F=F^^F` F `F=F^^F` F `F=FvvF`


from this table, we can say that columns (5) and (8) are identical.
`:. p^^(qvvr)=(p^^q)vv(p^^r)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Laws of logical connectives
(Previous method)
4. Valid or invalid argument in logic
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.