1. is Idempotent Matrix ?
`[[1,0,0],[0,1,0],[0,0,1]]`
Solution:
A square matrix `A` is called an idempotent matrix, if `A^2 = A`.
`A` | = | | `1` | `0` | `0` | | | `0` | `1` | `0` | | | `0` | `0` | `1` | |
|
`A×A` | = | | `1` | `0` | `0` | | | `0` | `1` | `0` | | | `0` | `0` | `1` | |
| × | | `1` | `0` | `0` | | | `0` | `1` | `0` | | | `0` | `0` | `1` | |
|
= | | `1×1+0×0+0×0` | `1×0+0×1+0×0` | `1×0+0×0+0×1` | | | `0×1+1×0+0×0` | `0×0+1×1+0×0` | `0×0+1×0+0×1` | | | `0×1+0×0+1×0` | `0×0+0×1+1×0` | `0×0+0×0+1×1` | |
|
= | | `1+0+0` | `0+0+0` | `0+0+0` | | | `0+0+0` | `0+1+0` | `0+0+0` | | | `0+0+0` | `0+0+0` | `0+0+1` | |
|
= | | `1` | `0` | `0` | | | `0` | `1` | `0` | | | `0` | `0` | `1` | |
|
Here `A^2 = A`, so `A` is an idempotent matrix
2. is Idempotent Matrix ?
`[[1,2],[3,4]]`
Solution:
A square matrix `A` is called an idempotent matrix, if `A^2 = A`.
= | | `1×1+2×3` | `1×2+2×4` | | | `3×1+4×3` | `3×2+4×4` | |
|
Here `A^2 != A`, so `A` is not an idempotent matrix
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then