1. is Positive Definite Matrix ?
[[25,15,-5],[15,18,0],[-5,0,11]]
Solution:
A matrix is positive definite if it's symmetric and all its pivots are positive.
Test method 1: Existence of all positive Pivots.
First apply Gaussian Elimination method to find Pivots
R_2 larr R_2-0.6xx R_1
R_3 larr R_3+0.2xx R_1
R_3 larr R_3-0.3333xx R_2
Pivots are the first non-zero element in each row of this eliminated matrix.
:. Pivots are 25,9,9
Here all pivots are positive, so matrix is positive definite.
A matrix is positive definite if Determinants of all upper-left sub-matrices are positive.
Test method 2: Determinants of all upper-left sub-matrices are positive.
Determinants are 25,225,2025
Here all determinants are positive, so matrix is positive definite.
A matrix is positive definite if it's symmetric and all its eigenvalues are positive.
Test method 3: All positive eigen values.
|A-lamdaI|=0
| (25-lamda) | 15 | -5 | | | 15 | (18-lamda) | 0 | | | -5 | 0 | (11-lamda) | |
| = 0 |
:.(25-lamda)((18-lamda) × (11-lamda) - 0 × 0)-15(15 × (11-lamda) - 0 × (-5))+(-5)(15 × 0 - (18-lamda) × (-5))=0
:.(25-lamda)((198-29lamda+lamda^2)-0)-15((165-15lamda)-0)-5(0-(-90+5lamda))=0
:.(25-lamda)(198-29lamda+lamda^2)-15(165-15lamda)-5(90-5lamda)=0
:. (4950-923lamda+54lamda^2-lamda^3)-(2475-225lamda)-(450-25lamda)=0
:.(-lamda^3+54lamda^2-673lamda+2025)=0
:.-(lamda^3-54lamda^2+673lamda-2025)=0
:.(lamda^3-54lamda^2+673lamda-2025)=0
Roots can be found using newton raphson method
Newton Raphson method for x^3-54x^2+673x-2025=0
Here
x^3-54x^2+673x-2025=0Let
f(x) = x^3-54x^2+673x-2025:. f'(x) = 3x^2-108x+673x_0 = 41^(st) iteration :f(x_0)=f(4)=4^3-54 xx 4^2+673 xx 4-2025=-133f'(x_0)=f'(4)=3 xx 4^2-108 xx 4+673=289x_1 = x_0 - f(x_0)/(f'(x_0))x_1=4 - (-133)/(289)x_1=4.460207612^(nd) iteration :f(x_1)=f(4.46020761)=4.46020761^3-54 xx 4.46020761^2+673 xx 4.46020761-2025=-8.7977561f'(x_1)=f'(4.46020761)=3 xx 4.46020761^2-108 xx 4.46020761+673=250.97793369x_2 = x_1 - f(x_1)/(f'(x_1))x_2=4.46020761 - (-8.7977561)/(250.97793369)x_2=4.495261523^(rd) iteration :f(x_2)=f(4.49526152)=4.49526152^3-54 xx 4.49526152^2+673 xx 4.49526152-2025=-0.04986905f'(x_2)=f'(4.49526152)=3 xx 4.49526152^2-108 xx 4.49526152+673=248.13388462x_3 = x_2 - f(x_2)/(f'(x_2))x_3=4.49526152 - (-0.04986905)/(248.13388462)x_3=4.495462494^(th) iteration :f(x_3)=f(4.49546249)=4.49546249^3-54 xx 4.49546249^2+673 xx 4.49546249-2025=-0.00000164f'(x_3)=f'(4.49546249)=3 xx 4.49546249^2-108 xx 4.49546249+673=248.11759994x_4 = x_3 - f(x_3)/(f'(x_3))x_4=4.49546249 - (-0.00000164)/(248.11759994)x_4=4.4954625Approximate root of the equation
x^3-54x^2+673x-2025=0 using Newton Raphson method is
4.4954625 (After 4 iterations)
n | x_0 | f(x_0) | f'(x_0) | x_1 | Update |
1 | 4 | -133 | 289 | 4.46020761 | x_0 = x_1 |
2 | 4.46020761 | -8.7977561 | 250.97793369 | 4.49526152 | x_0 = x_1 |
3 | 4.49526152 | -0.04986905 | 248.13388462 | 4.49546249 | x_0 = x_1 |
4 | 4.49546249 | -0.00000164 | 248.11759994 | 4.4954625 | x_0 = x_1 |
:. x=4.4954625
Now, using long division (x^3-54x^2+673x-2025)/(x-4.4954625)=x^2-49.5045375x+450.45420817
Now, x^2-49.5045375x+450.45420817=0
:. x=12.01568365 and x=37.48885386
:. The eigenvalues of the matrix A are given by lamda=4.4954625,12.01568365,37.48885386
Here all determinants are positive, so matrix is positive definite.
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then