Here `x^3-54x^2+673x-2025=0`
Let `f(x) = x^3-54x^2+673x-2025`
`:. f'(x) = 3x^2-108x+673`
`x_0 = 4`
`1^(st)` iteration :`f(x_0)=f(4)=4^3-54 xx 4^2+673 xx 4-2025=-133`
`f'(x_0)=f'(4)=3 xx 4^2-108 xx 4+673=289`
`x_1 = x_0 - f(x_0)/(f'(x_0))`
`x_1=4 - (-133)/(289)`
`x_1=4.46020761`
`2^(nd)` iteration :`f(x_1)=f(4.46020761)=4.46020761^3-54 xx 4.46020761^2+673 xx 4.46020761-2025=-8.7977561`
`f'(x_1)=f'(4.46020761)=3 xx 4.46020761^2-108 xx 4.46020761+673=250.97793369`
`x_2 = x_1 - f(x_1)/(f'(x_1))`
`x_2=4.46020761 - (-8.7977561)/(250.97793369)`
`x_2=4.49526152`
`3^(rd)` iteration :`f(x_2)=f(4.49526152)=4.49526152^3-54 xx 4.49526152^2+673 xx 4.49526152-2025=-0.04986905`
`f'(x_2)=f'(4.49526152)=3 xx 4.49526152^2-108 xx 4.49526152+673=248.13388462`
`x_3 = x_2 - f(x_2)/(f'(x_2))`
`x_3=4.49526152 - (-0.04986905)/(248.13388462)`
`x_3=4.49546249`
`4^(th)` iteration :`f(x_3)=f(4.49546249)=4.49546249^3-54 xx 4.49546249^2+673 xx 4.49546249-2025=-0.00000164`
`f'(x_3)=f'(4.49546249)=3 xx 4.49546249^2-108 xx 4.49546249+673=248.11759994`
`x_4 = x_3 - f(x_3)/(f'(x_3))`
`x_4=4.49546249 - (-0.00000164)/(248.11759994)`
`x_4=4.4954625`
Approximate root of the equation `x^3-54x^2+673x-2025=0` using Newton Raphson method is `4.4954625` (After 4 iterations)
`n` | `x_0` | `f(x_0)` | `f'(x_0)` | `x_1` | Update |
1 | 4 | -133 | 289 | 4.46020761 | `x_0 = x_1` |
2 | 4.46020761 | -8.7977561 | 250.97793369 | 4.49526152 | `x_0 = x_1` |
3 | 4.49526152 | -0.04986905 | 248.13388462 | 4.49546249 | `x_0 = x_1` |
4 | 4.49546249 | -0.00000164 | 248.11759994 | 4.4954625 | `x_0 = x_1` |