Home > Matrix & Vector calculators > is Positive Definite Matrix example

21. is Positive Definite Matrix example ( Enter your problem )
  1. Definition & Examples
  2. Example-2
Other related methods
  1. is Row Matrix
  2. is Column Matrix
  3. is Square Matrix
  4. is Horizontal Matrix
  5. is Vertical Matrix
  6. is Diagonal Matrix
  7. is Identity Matrix
  8. is Scalar Matrix
  9. is Null Matrix
  10. is Lower Triangle Matrix
  11. is Upper Triangle Matrix
  12. is Orthogonal Matrix
  13. is Singular Matrix
  14. is Nonsingular Matrix
  15. is Symmetric Matrix
  16. is Skew Symmetric Matrix
  17. is Nilpotent Matrix
  18. is Involutary Matrix
  19. is Idempotent Matrix
  20. is Periodic Matrix
  21. is Positive Definite Matrix
  22. is Negative Definite Matrix
  23. is Derogatory Matrix
  24. is Diagonally Dominant Matrix
  25. is Strictly Diagonally Dominant Matrix
  26. Auto detect the matrix type

1. Definition & Examples
(Previous example)
22. is Negative Definite Matrix
(Next method)

2. Example-2





2. is Positive Definite Matrix ?
`[[2,15,-5],[15,18,0],[-5,0,11]]`


Solution:
`A` = 
`2``15``-5`
`15``18``0`
`-5``0``11`


A matrix is positive definite if it's symmetric and all its pivots are positive.

Test method 1: Existence of all positive Pivots.
First apply Gaussian Elimination method to find Pivots
`A` = 
`2``15``-5`
`15``18``0`
`-5``0``11`


`R_2 larr R_2-7.5xx R_1`

 = 
`2``15``-5`
`0``-94.5``37.5`
`-5``0``11`


`R_3 larr R_3+2.5xx R_1`

 = 
`2``15``-5`
`0``-94.5``37.5`
`0``37.5``-1.5`


`R_3 larr R_3+0.3968xx R_2`

 = 
`2``15``-5`
`0``-94.5``37.5`
`0``0``13.381`


Pivots are the first non-zero element in each row of this eliminated matrix.

`:.` Pivots are `2,-189/2,281/21`

Here `-94.5` is not positive, so matrix is not positive definite.



A matrix is positive definite if Determinants of all upper-left sub-matrices are positive.

Test method 2: Determinants of all upper-left sub-matrices are positive.
`A` = 
`2``15``-5`
`15``18``0`
`-5``0``11`


 `2` 
`=2`


 `2`  `15` 
 `15`  `18` 
`=-189`


 `2`  `15`  `-5` 
 `15`  `18`  `0` 
 `-5`  `0`  `11` 
`=-2529`


Determinants are `2,-189,-2529`

Here `-189` is not positive, so matrix is not positive definite.



A matrix is positive definite if it's symmetric and all its eigenvalues are positive.

Test method 3: All positive eigen values.
`|A-lamdaI|=0`

 `(2-lamda)`  `15`  `-5` 
 `15`  `(18-lamda)`  `0` 
 `-5`  `0`  `(11-lamda)` 
 = 0


`:.(2-lamda)((18-lamda) × (11-lamda) - 0 × 0)-15(15 × (11-lamda) - 0 × (-5))+(-5)(15 × 0 - (18-lamda) × (-5))=0`

`:.(2-lamda)((198-29lamda+lamda^2)-0)-15((165-15lamda)-0)-5(0-(-90+5lamda))=0`

`:.(2-lamda)(198-29lamda+lamda^2)-15(165-15lamda)-5(90-5lamda)=0`

`:. (396-256lamda+31lamda^2-lamda^3)-(2475-225lamda)-(450-25lamda)=0`

`:.(-lamda^3+31lamda^2-6lamda-2529)=0`

`:.-(lamda^3-31lamda^2+6lamda+2529)=0`

`:.(lamda^3-31lamda^2+6lamda+2529)=0 `

Roots can be found using newton raphson method
Newton Raphson method for `x^3-31x^2+6x+2529=0`


Here `x^3-31x^2+6x+2529=0`

Let `f(x) = x^3-31x^2+6x+2529`

`:. f'(x) = 3x^2-62x+6`

`x_0 = -8`


`1^(st)` iteration :

`f(x_0)=f(-8)=-8^3-31 xx -8^2+6 xx -8+2529=-15`

`f'(x_0)=f'(-8)=3 xx -8^2-62 xx -8+6=694`

`x_1 = x_0 - f(x_0)/(f'(x_0))`

`x_1=-8 - (-15)/(694)`

`x_1=-7.97838617`


`2^(nd)` iteration :

`f(x_1)=f(-7.97838617)=-7.97838617^3-31 xx -7.97838617^2+6 xx -7.97838617+2529=-0.02568358`

`f'(x_1)=f'(-7.97838617)=3 xx -7.97838617^2-62 xx -7.97838617+6=691.62387986`

`x_2 = x_1 - f(x_1)/(f'(x_1))`

`x_2=-7.97838617 - (-0.02568358)/(691.62387986)`

`x_2=-7.97834903`


Approximate root of the equation `x^3-31x^2+6x+2529=0` using Newton Raphson method is `-7.97834903` (After 2 iterations)

`n``x_0``f(x_0)``f'(x_0)``x_1`Update
1-8-15694-7.97838617`x_0 = x_1`
2-7.97838617-0.02568358691.62387986-7.97834903`x_0 = x_1`


`:. `x=-7.97834903


Now, using long division `(x^3-31x^2+6x+2529)/(x+7.97834903)=x^2-38.97834903x+316.98287327`


Now, `x^2-38.97834903x+316.98287327=0`

`:. x=11.56168752` and `x=27.41666151`


`:.` The eigenvalues of the matrix A are given by `lamda=-7.97834903,11.56168752,27.41666151`

Here `-7.9783` is not positive, so matrix is not positive definite.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Definition & Examples
(Previous example)
22. is Negative Definite Matrix
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.