1. is Skew Symmetric Matrix ?
`[[0,-2,3],[2,0,4],[-3,-4,0]]`
Solution:
A square matrix `A=[a_(ij)]` is said to be a skew symmetric if `A = -A^T` i.e. `a_(ij) = -a_(ji)` for all i,j.
Note : In a skew symmetric matrix, all the diagonal elements are always zero.
`A` | = | | `0` | `-2` | `3` | | | `2` | `0` | `4` | | | `-3` | `-4` | `0` | |
|
`A^T` | = | | `0` | `-2` | `3` | | | `2` | `0` | `4` | | | `-3` | `-4` | `0` | |
| T |
| = | | `0` | `2` | `-3` | | | `-2` | `0` | `-4` | | | `3` | `4` | `0` | |
|
`(-1) × (A^T)` | = | `-1` | × | | `0` | `2` | `-3` | | | `-2` | `0` | `-4` | | | `3` | `4` | `0` | |
| = | | `0` | `-2` | `3` | | | `2` | `0` | `4` | | | `-3` | `-4` | `0` | |
|
Here, `A` and `-A^T` are equal, so `A` is a skew symmetric matrix
2. is Skew Symmetric Matrix ?
`[[0,2,3],[2,0,4],[3,-4,0]]`
Solution:
A square matrix `A=[a_(ij)]` is said to be a skew symmetric if `A = -A^T` i.e. `a_(ij) = -a_(ji)` for all i,j.
Note : In a skew symmetric matrix, all the diagonal elements are always zero.
`A` | = | | `0` | `2` | `3` | | | `2` | `0` | `4` | | | `3` | `-4` | `0` | |
|
`A^T` | = | | `0` | `2` | `3` | | | `2` | `0` | `4` | | | `3` | `-4` | `0` | |
| T |
| = | | `0` | `2` | `3` | | | `2` | `0` | `-4` | | | `3` | `4` | `0` | |
|
`(-1) × (A^T)` | = | `-1` | × | | `0` | `2` | `3` | | | `2` | `0` | `-4` | | | `3` | `4` | `0` | |
| = | | `0` | `-2` | `-3` | | | `-2` | `0` | `4` | | | `-3` | `-4` | `0` | |
|
Here, `A` and `-A^T` are not equal, so `A` is not a skew symmetric matrix
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then