Find LU decomposition using Crout's method of Matrix ...
`[[2,3],[4,10]]`Solution:Crout's method for LU decomposition
Let `A=LU`
| = | | `l_(11)` | `0` | | | `l_(21)` | `l_(22)` | |
| `xx` | |
| = | | `l_(11)` | `l_(11)u_(12)` | | | `l_(21)` | `l_(21)u_(12) + l_(22)` | |
|
This implies
`l_(11)=2`
`l_(11)u_(12)=3=>2xxu_(12)=3=>u_(12)=1.5`
`l_(21)=4`
`l_(21)u_(12) + l_(22)=10=>4xx1.5 + l_(22)=10=>l_(22)=4`
`:.A=L xx U=LU`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then