|
|
Home > Matrix & Vector calculators > value of determinant using properties of determinants example
|
|
21. determinants using properties of determinants example
( Enter your problem )
|
- Example `[[201,210,220],[151,155,140],[50,55,80]]`
- Example `[[100,205,105],[200,408,207],[300,608,310]]`
- Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
- Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[201,210,220],[151,155,140],[50,55,80]]`
1. Find value of determinant using properties of determinants ... `[[201,210,220],[151,155,140],[50,55,80]]`
Solution:
`A=` | | 201 | 210 | 220 | | | 151 | 155 | 140 | | | 50 | 55 | 80 | |
|
Now, `R_1 = R_1 - R_2`
`=` | | 50 | 55 | 80 | | | 151 | 155 | 140 | | | 50 | 55 | 80 | |
|
Here `R_3 = R_1`, So value of the determinant is 0
`=0`
2. Find value of determinant using properties of determinants ... `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
Solution:
`A=` | | 1977 | 1979 | 1981 | | | 1940 | 1943 | 1946 | | | 10 | 17 | 24 | |
|
Now, `C_2 = C_2 - C_1` and `C_3 = C_3 - C_2`
Here `C_2 = C_3`, So value of the determinant is 0
`=0`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|