|
|
Home > Matrix & Vector calculators > value of determinant using properties of determinants example
|
|
21. determinants using properties of determinants example
( Enter your problem )
|
- Example `[[201,210,220],[151,155,140],[50,55,80]]`
- Example `[[100,205,105],[200,408,207],[300,608,310]]`
- Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
- Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
Find value of determinant using properties of determinants ... `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
Solution:
`A=` | | 1977 | 1979 | 1981 | | | 1940 | 1943 | 1946 | | | 10 | 17 | 24 | |
|
Now, `C_2=C_2 - C_1` and `C_3=C_3 - C_2`
Here `C_2=C_3`, So value of the determinant is 0
`=0`
Method-2: Determinant by expanding cofactors`|A|` | = | | `1977` | `1979` | `1981` | | | `1940` | `1943` | `1946` | | | `10` | `17` | `24` | |
|
`=1977 xx (1943 × 24 - 1946 × 17) -1979 xx (1940 × 24 - 1946 × 10) +1981 xx (1940 × 17 - 1943 × 10)` `=1977 xx (46632 -33082) -1979 xx (46560 -19460) +1981 xx (32980 -19430)` `=1977 xx (13550) -1979 xx (27100) +1981 xx (13550)` `= 26788350 -53630900 +26842550` `=0`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|