1. Example `[[1,2,3],[4,5,6],[7,8,9]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find determinants using Sarrus Rule ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution:
Write first 2 columns of matrix to right of 3rd column, so we have total 5 columns.
`A=` | | 3 | 2 | 4 | 3 | 2 | | | 2 | 0 | 2 | 2 | 0 | | | 4 | 2 | 3 | 4 | 2 | |
|
`A=` | | 3 | 2 | 4 | 3 | 2 | | | 2 | 0 | 2 | 2 | 0 | | | 4 | 2 | 3 | 4 | 2 | |
|
Now, add products of diagonals going from top to bottom (blue lines) and subtract products of diagonals going from bottom to top (red lines).
`={3*0*3+2*2*4+4*2*2}-{4*0*4+2*2*3+3*2*2}`
`=(0+16+16)-(0+12+12)`
`=32-24`
`=8`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[1,2,3],[4,5,6],[7,8,9]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|