|
|
Home > Matrix & Vector calculators > Determinants using Sarrus Rule example
|
|
20. determinants using Sarrus Rule example
( Enter your problem )
|
- Example `[[1,2,3],[4,5,6],[7,8,9]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[1,2,3],[0,1,0],[2,3,1]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[1,2,3],[0,1,0],[2,3,1]]`
Find determinants using Sarrus Rule ... `[[1,2,3],[0,1,0],[2,3,1]]`
Solution:
Write first 2 columns of matrix to right of 3rd column, so we have total 5 columns.
`A=` | | 1 | 2 | 3 | 1 | 2 | | | 0 | 1 | 0 | 0 | 1 | | | 2 | 3 | 1 | 2 | 3 | |
|
`A=` | | 1 | 2 | 3 | 1 | 2 | | | 0 | 1 | 0 | 0 | 1 | | | 2 | 3 | 1 | 2 | 3 | |
|
Now, add products of diagonals going from top to bottom (blue lines) and subtract products of diagonals going from bottom to top (red lines).
`={1*1*1+2*0*2+3*0*3}-{2*1*3+3*0*1+1*0*2}`
`=(1+0+0)-(6+0+0)`
`=1-6`
`=-5`
Method-2: Determinant by expanding cofactors`|A|` | = | | `1` | `2` | `3` | | | `0` | `1` | `0` | | | `2` | `3` | `1` | |
|
`=1 xx (1 × 1 - 0 × 3) -2 xx (0 × 1 - 0 × 2) +3 xx (0 × 3 - 1 × 2)` `=1 xx (1 +0) -2 xx (0 +0) +3 xx (0 -2)` `=1 xx (1) -2 xx (0) +3 xx (-2)` `= 1 +0 -6` `=-5`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|