11. Diagonal Matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
1. Find Matrix Diagonalization ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:A can be diagonalized if there exists an invertible matrix P and diagonal matrix D such that `A=PDP^-1` Here `A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Find eigenvalues of the matrix `A` `|A-lamdaI|=0` | `(8-lamda)` | `-6` | `2` | | | `-6` | `(7-lamda)` | `-4` | | | `2` | `-4` | `(3-lamda)` | |
| = 0 |
`:.(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)=0` `:.(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))=0` `:.(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)=0` `:. (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)=0` `:.(-lamda^3+18lamda^2-45lamda)=0` `:.-lamda(lamda-3)(lamda-15)=0` `:.lamda=0 or (lamda-3)=0 or (lamda-15)=0` `:.lamda=0 or lamda=3 or lamda=15` `:.` The eigenvalues of the matrix `A` are given by `lamda=0,3,15`
1. Eigenvectors for `lamda=0`1. Eigenvectors for `lamda=0` = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Now, reduce this matrix `R_1 larr R_1-:8` = | | `1` | `-0.75` | `0.25` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_2 larr R_2+6xx R_1` = | | `1` | `-0.75` | `0.25` | | | `0` | `2.5` | `-2.5` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-2xx R_1` = | | `1` | `-0.75` | `0.25` | | | `0` | `2.5` | `-2.5` | | | `0` | `-2.5` | `2.5` | |
|
`R_2 larr R_2-:2.5` = | | `1` | `-0.75` | `0.25` | | | `0` | `1` | `-1` | | | `0` | `-2.5` | `2.5` | |
|
`R_1 larr R_1+0.75xx R_2` = | | `1` | `0` | `-0.5` | | | `0` | `1` | `-1` | | | `0` | `-2.5` | `2.5` | |
|
`R_3 larr R_3+2.5xx R_2` = | | `1` | `0` | `-0.5` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` `(A-0I)` | | = | | `1` | `0` | `-0.5` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.5x_3=0,x_2-x_3=0` `=>x_1=0.5x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1` 2. Eigenvectors for `lamda=3`
2. Eigenvectors for `lamda=3` = | | `5` | `-6` | `2` | | | `-6` | `4` | `-4` | | | `2` | `-4` | `0` | |
|
Now, reduce this matrix `R_1 larr R_1-:5` = | | `1` | `-1.2` | `0.4` | | | `-6` | `4` | `-4` | | | `2` | `-4` | `0` | |
|
`R_2 larr R_2+6xx R_1` = | | `1` | `-1.2` | `0.4` | | | `0` | `-3.2` | `-1.6` | | | `2` | `-4` | `0` | |
|
`R_3 larr R_3-2xx R_1` = | | `1` | `-1.2` | `0.4` | | | `0` | `-3.2` | `-1.6` | | | `0` | `-1.6` | `-0.8` | |
|
`R_2 larr R_2-:(-3.2)` = | | `1` | `-1.2` | `0.4` | | | `0` | `1` | `0.5` | | | `0` | `-1.6` | `-0.8` | |
|
`R_1 larr R_1+1.2xx R_2` = | | `1` | `0` | `1` | | | `0` | `1` | `0.5` | | | `0` | `-1.6` | `-0.8` | |
|
`R_3 larr R_3+1.6xx R_2` = | | `1` | `0` | `1` | | | `0` | `1` | `0.5` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=3` `(A-3I)` | | = | | `1` | `0` | `1` | | | `0` | `1` | `0.5` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+x_3=0,x_2+0.5x_3=0` `=>x_1=-x_3,x_2=-0.5x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=3` is Let `x_3=1` 3. Eigenvectors for `lamda=15`
3. Eigenvectors for `lamda=15` = | | `-7` | `-6` | `2` | | | `-6` | `-8` | `-4` | | | `2` | `-4` | `-12` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-7)` = | | `1` | `0.8571428571` | `-0.2857142857` | | | `-6` | `-8` | `-4` | | | `2` | `-4` | `-12` | |
|
`R_2 larr R_2+6xx R_1` = | | `1` | `0.8571428571` | `-0.2857142857` | | | `0` | `-2.8571428571` | `-5.7142857143` | | | `2` | `-4` | `-12` | |
|
`R_3 larr R_3-2xx R_1` = | | `1` | `0.8571428571` | `-0.2857142857` | | | `0` | `-2.8571428571` | `-5.7142857143` | | | `0` | `-5.7142857143` | `-11.4285714286` | |
|
`R_2 larr R_2-:(-2.8571428571)` = | | `1` | `0.8571428571` | `-0.2857142857` | | | `0` | `1` | `2` | | | `0` | `-5.7142857143` | `-11.4285714286` | |
|
`R_1 larr R_1-0.8571428571xx R_2` = | | `1` | `0` | `-2` | | | `0` | `1` | `2` | | | `0` | `-5.7142857143` | `-11.4285714286` | |
|
`R_3 larr R_3+5.7142857143xx R_2` = | | `1` | `0` | `-2` | | | `0` | `1` | `2` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=15` `(A-15I)` | | = | | `1` | `0` | `-2` | | | `0` | `1` | `2` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-2x_3=0,x_2+2x_3=0` `=>x_1=2x_3,x_2=-2x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=15` is Let `x_3=1`
2. The eigenvectors compose the columns of matrix P `:.P` | = | | `0.5` | `-1` | `2` | | | `1` | `-0.5` | `-2` | | | `1` | `1` | `1` | |
|
1. The diagonal matrix D is composed of the eigenvalues `:.D` | = | | `0` | `0` | `0` | | | `0` | `3` | `0` | | | `0` | `0` | `15` | |
|
3. Now find `P^-1` `|P|` | = | | `0.5` | `-1` | `2` | | | `1` | `-0.5` | `-2` | | | `1` | `1` | `1` | |
|
`=0.5 xx ((-0.5) × 1 - (-2) × 1)-(-1) xx (1 × 1 - (-2) × 1)+2 xx (1 × 1 - (-0.5) × 1)` `=0.5 xx (-0.5 +2)-(-1) xx (1 +2)+2 xx (1 +0.5)` `=0.5 xx (1.5)-(-1) xx (3)+2 xx (1.5)` `= 0.75 +3 +3` `=6.75` `Adj(P)` | = | Adj | | `0.5` | `-1` | `2` | | | `1` | `-0.5` | `-2` | | | `1` | `1` | `1` | |
|
|
= | | `+((-0.5) × 1 - (-2) × 1)` | `-(1 × 1 - (-2) × 1)` | `+(1 × 1 - (-0.5) × 1)` | | | `-((-1) × 1 - 2 × 1)` | `+(0.5 × 1 - 2 × 1)` | `-(0.5 × 1 - (-1) × 1)` | | | `+((-1) × (-2) - 2 × (-0.5))` | `-(0.5 × (-2) - 2 × 1)` | `+(0.5 × (-0.5) - (-1) × 1)` | |
| T |
|
= | | `+((-0.5) - -2)` | `-(1 - -2)` | `+(1 - -0.5)` | | | `-((-1) - 2)` | `+(0.5 - 2)` | `-(0.5 - -1)` | | | `+(2 - -1)` | `-((-1) - 2)` | `+((-0.25) - -1)` | |
| T |
|
= | | `1.5` | `-3` | `1.5` | | | `3` | `-1.5` | `-1.5` | | | `3` | `3` | `0.75` | |
| T |
|
= | | `1.5` | `3` | `3` | | | `-3` | `-1.5` | `3` | | | `1.5` | `-1.5` | `0.75` | |
|
`"Now, "P^(-1)=1/|P| × Adj(P)` = | `1/(6.75)` × | | `1.5` | `3` | `3` | | | `-3` | `-1.5` | `3` | | | `1.5` | `-1.5` | `0.75` | |
|
= | | `0.2222222222` | `0.4444444444` | `0.4444444444` | | | `-0.4444444444` | `-0.2222222222` | `0.4444444444` | | | `0.2222222222` | `-0.2222222222` | `0.1111111111` | |
|
`:.P^-1` | = | | `0.2222222222` | `0.4444444444` | `0.4444444444` | | | `-0.4444444444` | `-0.2222222222` | `0.4444444444` | | | `0.2222222222` | `-0.2222222222` | `0.1111111111` | |
|
4. Now checking `A=PDP^(-1)` ? `P×D` | = | | `0.5` | `-1` | `2` | | | `1` | `-0.5` | `-2` | | | `1` | `1` | `1` | |
| × | | `0` | `0` | `0` | | | `0` | `3` | `0` | | | `0` | `0` | `15` | |
|
= | | `0.5×0+(-1)×0+2×0` | `0.5×0+(-1)×3+2×0` | `0.5×0+(-1)×0+2×15` | | | `1×0+(-0.5)×0+(-2)×0` | `1×0+(-0.5)×3+(-2)×0` | `1×0+(-0.5)×0+(-2)×15` | | | `1×0+1×0+1×0` | `1×0+1×3+1×0` | `1×0+1×0+1×15` | |
|
= | | `0+0+0` | `0+(-3)+0` | `0+0+30` | | | `0+0+0` | `0+(-1.5)+0` | `0+0+(-30)` | | | `0+0+0` | `0+3+0` | `0+0+15` | |
|
= | | `0` | `-3` | `30` | | | `0` | `-1.5` | `-30` | | | `0` | `3` | `15` | |
|
`(P × D)×(P^-1)` | = | | `0` | `-3` | `30` | | | `0` | `-1.5` | `-30` | | | `0` | `3` | `15` | |
| × | | `0.2222222222` | `0.4444444444` | `0.4444444444` | | | `-0.4444444444` | `-0.2222222222` | `0.4444444444` | | | `0.2222222222` | `-0.2222222222` | `0.1111111111` | |
|
= | | `0×0.2222222222+(-3)×(-0.4444444444)+30×0.2222222222` | `0×0.4444444444+(-3)×(-0.2222222222)+30×(-0.2222222222)` | `0×0.4444444444+(-3)×0.4444444444+30×0.1111111111` | | | `0×0.2222222222+(-1.5)×(-0.4444444444)+(-30)×0.2222222222` | `0×0.4444444444+(-1.5)×(-0.2222222222)+(-30)×(-0.2222222222)` | `0×0.4444444444+(-1.5)×0.4444444444+(-30)×0.1111111111` | | | `0×0.2222222222+3×(-0.4444444444)+15×0.2222222222` | `0×0.4444444444+3×(-0.2222222222)+15×(-0.2222222222)` | `0×0.4444444444+3×0.4444444444+15×0.1111111111` | |
|
= | | `0+1.3333333333+6.6666666667` | `0+0.6666666667+(-6.6666666667)` | `0+(-1.3333333333)+3.3333333333` | | | `0+0.6666666667+(-6.6666666667)` | `0+0.3333333333+6.6666666667` | `0+(-0.6666666667)+(-3.3333333333)` | | | `0+(-1.3333333333)+3.3333333333` | `0+(-0.6666666667)+(-3.3333333333)` | `0+1.3333333333+1.6666666667` | |
|
= | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`:.P*D*P^-1` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
And `A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|