11. Diagonal Matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Diagonal Matrix ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution:
Here `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
A can be diagonalized if there exists an invertible matrix P and diagonal matrix D such that `A=PDP^-1`
Find eigenvalues of the matrix `A`
`|A-lamdaI|=0`
| `(3-lamda)` | `2` | `4` | | | `2` | `(-lamda)` | `2` | | | `4` | `2` | `(3-lamda)` | |
| = 0 |
`:.(3-lamda)((-lamda) × (3-lamda) - 2 × 2)-2(2 × (3-lamda) - 2 × 4)+4(2 × 2 - (-lamda) × 4)=0`
`:.(3-lamda)((-3lamda+lamda^2)-4)-2((6-2lamda)-8)+4(4-(-4lamda))=0`
`:.(3-lamda)(-4-3lamda+lamda^2)-2(-2-2lamda)+4(4+4lamda)=0`
`:. (-12-5lamda+6lamda^2-lamda^3)-(-4-4lamda)+(16+16lamda)=0`
`:.(-lamda^3+6lamda^2+15lamda+8)=0`
`:.-(lamda+1)(lamda+1)(lamda-8)=0`
`:.` The eigenvalues of the matrix A are given by `lamda=-1,-1,8`
1. The diagonal matrix D is composed of the eigenvalues
`:.D` | = | | `-1` | `0` | `0` | | | `0` | `-1` | `0` | | | `0` | `0` | `8` | |
|
1. Eigenvectors for `lamda=-1`
= | | `4` | `2` | `4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
Now, reduce this matrix `R_1 larr R_1-:4`
= | | `1` `1=4-:4` `R_1 larr R_1-:4` | `1/2` `1/2=2-:4` `R_1 larr R_1-:4` | `1` `1=4-:4` `R_1 larr R_1-:4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `1/2` | `1` | | | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | `0` `0=1-2xx1/2` `R_2 larr R_2-2xx R_1` | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | | | `4` | `2` | `4` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `1/2` | `1` | | | `0` | `0` | `0` | | | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | `0` `0=2-4xx1/2` `R_3 larr R_3-4xx R_1` | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | |
|
The system associated with the eigenvalue `lamda=-1`
`(A+1I)` | | = | | `1` | `1/2` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+1/2x_2+x_3=0`
`=>x_1=-1/2x_2-x_3`
`:.` eigenvectors corresponding to the eigenvalue `lamda=-1` is
Let `x_2=1,x_3=0`
Let `x_2=0,x_3=1`
3. Eigenvectors for `lamda=8`
= | | `-5` | `2` | `4` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
Now, reduce this matrix `R_1 larr R_1-:-5`
= | | `1` `1=-5-:-5` `R_1 larr R_1-:-5` | `-2/5` `-2/5=2-:-5` `R_1 larr R_1-:-5` | `-4/5` `-4/5=4-:-5` `R_1 larr R_1-:-5` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `-2/5` | `-4/5` | | | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | `-36/5` `-36/5=-8-2xx-2/5` `R_2 larr R_2-2xx R_1` | `18/5` `18/5=2-2xx-4/5` `R_2 larr R_2-2xx R_1` | | | `4` | `2` | `-5` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `-2/5` | `-4/5` | | | `0` | `-36/5` | `18/5` | | | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | `18/5` `18/5=2-4xx-2/5` `R_3 larr R_3-4xx R_1` | `-9/5` `-9/5=-5-4xx-4/5` `R_3 larr R_3-4xx R_1` | |
|
`R_2 larr R_2xx-5/36`
= | | `1` | `-2/5` | `-4/5` | | | `0` `0=0xx-5/36` `R_2 larr R_2xx-5/36` | `1` `1=-36/5xx-5/36` `R_2 larr R_2xx-5/36` | `-1/2` `-1/2=18/5xx-5/36` `R_2 larr R_2xx-5/36` | | | `0` | `18/5` | `-9/5` | |
|
`R_1 larr R_1+2/5xx R_2`
= | | `1` `1=1+2/5xx0` `R_1 larr R_1+2/5xx R_2` | `0` `0=-2/5+2/5xx1` `R_1 larr R_1+2/5xx R_2` | `-1` `-1=-4/5+2/5xx-1/2` `R_1 larr R_1+2/5xx R_2` | | | `0` | `1` | `-1/2` | | | `0` | `18/5` | `-9/5` | |
|
`R_3 larr R_3-18/5xx R_2`
= | | `1` | `0` | `-1` | | | `0` | `1` | `-1/2` | | | `0` `0=0-18/5xx0` `R_3 larr R_3-18/5xx R_2` | `0` `0=18/5-18/5xx1` `R_3 larr R_3-18/5xx R_2` | `0` `0=-9/5-18/5xx-1/2` `R_3 larr R_3-18/5xx R_2` | |
|
The system associated with the eigenvalue `lamda=8`
`(A-8I)` | | = | | `1` | `0` | `-1` | | | `0` | `1` | `-1/2` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-x_3=0,x_2-1/2x_3=0`
`=>x_1=x_3,x_2=1/2x_3`
`:.` eigenvectors corresponding to the eigenvalue `lamda=8` is
Let `x_3=1`
2. The eigenvectors compose the columns of matrix P
`:.P` | = | | `-1/2` | `-1` | `1` | | | `1` | `0` | `1/2` | | | `0` | `1` | `1` | |
|
3. Now find `P^-1`
`|P|` | = | | `-1/2` | `-1` | `1` | | | `1` | `0` | `1/2` | | | `0` | `1` | `1` | |
|
`=-1/2 xx (0 × 1 - 1/2 × 1) +1 xx (1 × 1 - 1/2 × 0) +1 xx (1 × 1 - 0 × 0)`
`=-1/2 xx (0 -1/2) +1 xx (1 +0) +1 xx (1 +0)`
`=-1/2 xx (-1/2) - +1 xx (1) +1 xx (1)`
`= 1/4 +1 +1`
`=9/4`
`Adj(P)` | = | Adj | | `-1/2` | `-1` | `1` | | | `1` | `0` | `1/2` | | | `0` | `1` | `1` | |
|
|
= | | `+(0 × 1 - 1/2 × 1)` | `-(1 × 1 - 1/2 × 0)` | `+(1 × 1 - 0 × 0)` | | | `-(-1 × 1 - 1 × 1)` | `+(-1/2 × 1 - 1 × 0)` | `-(-1/2 × 1 - (-1) × 0)` | | | `+(-1 × 1/2 - 1 × 0)` | `-(-1/2 × 1/2 - 1 × 1)` | `+(-1/2 × 0 - (-1) × 1)` | |
| T |
|
= | | `+(0 -1/2)` | `-(1 +0)` | `+(1 +0)` | | | `-(-1 -1)` | `+(-1/2 +0)` | `-(-1/2 +0)` | | | `+(-1/2 +0)` | `-(-1/4 -1)` | `+(0 +1)` | |
| T |
|
= | | `-1/2` | `-1` | `1` | | | `2` | `-1/2` | `1/2` | | | `-1/2` | `5/4` | `1` | |
| T |
|
= | | `-1/2` | `2` | `-1/2` | | | `-1` | `-1/2` | `5/4` | | | `1` | `1/2` | `1` | |
|
`"Now, "P^(-1)=1/|P| × Adj(P)`
= | `1/(9/4)` × | | `-1/2` | `2` | `-1/2` | | | `-1` | `-1/2` | `5/4` | | | `1` | `1/2` | `1` | |
|
= | | `-2/9` | `8/9` | `-2/9` | | | `-4/9` | `-2/9` | `5/9` | | | `4/9` | `2/9` | `4/9` | |
|
`:.P^-1` | = | | `-2/9` | `8/9` | `-2/9` | | | `-4/9` | `-2/9` | `5/9` | | | `4/9` | `2/9` | `4/9` | |
|
4. Now verify that `A=PDP^(-1)`
`P×D` | = | | `-1/2` | `-1` | `1` | | | `1` | `0` | `1/2` | | | `0` | `1` | `1` | |
| × | | `-1` | `0` | `0` | | | `0` | `-1` | `0` | | | `0` | `0` | `8` | |
|
= | | `-1/2×-1-1×0+1×0` | `-1/2×0-1×-1+1×0` | `-1/2×0-1×0+1×8` | | | `1×-1+0×0+1/2×0` | `1×0+0×-1+1/2×0` | `1×0+0×0+1/2×8` | | | `0×-1+1×0+1×0` | `0×0+1×-1+1×0` | `0×0+1×0+1×8` | |
|
= | | `1/2+0+0` | `0+1+0` | `0+0+8` | | | `-1+0+0` | `0+0+0` | `0+0+4` | | | `0+0+0` | `0-1+0` | `0+0+8` | |
|
= | | `1/2` | `1` | `8` | | | `-1` | `0` | `4` | | | `0` | `-1` | `8` | |
|
`(P × D)×(P^-1)` | = | | `1/2` | `1` | `8` | | | `-1` | `0` | `4` | | | `0` | `-1` | `8` | |
| × | | `-2/9` | `8/9` | `-2/9` | | | `-4/9` | `-2/9` | `5/9` | | | `4/9` | `2/9` | `4/9` | |
|
= | | `1/2×-2/9+1×-4/9+8×4/9` | `1/2×8/9+1×-2/9+8×2/9` | `1/2×-2/9+1×5/9+8×4/9` | | | `-1×-2/9+0×-4/9+4×4/9` | `-1×8/9+0×-2/9+4×2/9` | `-1×-2/9+0×5/9+4×4/9` | | | `0×-2/9-1×-4/9+8×4/9` | `0×8/9-1×-2/9+8×2/9` | `0×-2/9-1×5/9+8×4/9` | |
|
= | | `-1/9-4/9+32/9` | `4/9-2/9+16/9` | `-1/9+5/9+32/9` | | | `2/9+0+16/9` | `-8/9+0+8/9` | `2/9+0+16/9` | | | `0+4/9+32/9` | `0+2/9+16/9` | `0-5/9+32/9` | |
|
= | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`:.P*D*P^-1` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
And `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|