11. Diagonal Matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Matrix Diagonalization ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:A can be diagonalized if there exists an invertible matrix P and diagonal matrix D such that `A=PDP^-1` Here `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Find eigenvalues of the matrix `A` `|A-lamdaI|=0` | `(3-lamda)` | `2` | `4` | | | `2` | `(-lamda)` | `2` | | | `4` | `2` | `(3-lamda)` | |
| = 0 |
`:.(3-lamda)((-lamda) × (3-lamda) - 2 × 2)-2(2 × (3-lamda) - 2 × 4)+4(2 × 2 - (-lamda) × 4)=0` `:.(3-lamda)((-3lamda+lamda^2)-4)-2((6-2lamda)-8)+4(4-(-4lamda))=0` `:.(3-lamda)(-4-3lamda+lamda^2)-2(-2-2lamda)+4(4+4lamda)=0` `:. (-12-5lamda+6lamda^2-lamda^3)-(-4-4lamda)+(16+16lamda)=0` `:.(-lamda^3+6lamda^2+15lamda+8)=0` `:.-(lamda+1)(lamda+1)(lamda-8)=0` `:.(lamda+1)=0 or (lamda+1)=0 or (lamda-8)=0` `:.lamda=-1 or lamda=-1 or lamda=8` `:.` The eigenvalues of the matrix `A` are given by `lamda=-1,8`
1. Eigenvectors for `lamda=-1`1. Eigenvectors for `lamda=-1` = | | `4` | `2` | `4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
Now, reduce this matrix `R_1 larr R_1-:4` = | | `1` | `0.5` | `1` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `4` | `2` | `4` | |
|
`R_3 larr R_3-4xx R_1` = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=-1` `(A-(-1)I)` | | = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+0.5x_2+x_3=0` `=>x_1=-0.5x_2-x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=-1` is Let `x_2=1,x_3=0` Let `x_2=0,x_3=1` 1. Orthogonal Eigenvectors for `lamda=-1` 3. Eigenvectors for `lamda=8`
3. Eigenvectors for `lamda=8` = | | `-5` | `2` | `4` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-5)` = | | `1` | `-0.4` | `-0.8` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `-0.4` | `-0.8` | | | `0` | `-7.2` | `3.6` | | | `4` | `2` | `-5` | |
|
`R_3 larr R_3-4xx R_1` = | | `1` | `-0.4` | `-0.8` | | | `0` | `-7.2` | `3.6` | | | `0` | `3.6` | `-1.8` | |
|
`R_2 larr R_2-:(-7.2)` = | | `1` | `-0.4` | `-0.8` | | | `0` | `1` | `-0.5` | | | `0` | `3.6` | `-1.8` | |
|
`R_1 larr R_1+0.4xx R_2` = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `3.6` | `-1.8` | |
|
`R_3 larr R_3-3.6xx R_2` = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=8` `(A-8I)` | | = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-x_3=0,x_2-0.5x_3=0` `=>x_1=x_3,x_2=0.5x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=8` is Let `x_3=1`
2. The eigenvectors compose the columns of matrix P `:.P` | = | | `-0.5` | `-0.8` | `1` | | | `1` | `-0.4` | `0.5` | | | `0` | `1` | `1` | |
|
1. The diagonal matrix D is composed of the eigenvalues `:.D` | = | | `-1` | `0` | `0` | | | `0` | `-1` | `0` | | | `0` | `0` | `8` | |
|
3. Now find `P^-1` `|P|` | = | | `-0.5` | `-0.8` | `1` | | | `1` | `-0.4` | `0.5` | | | `0` | `1` | `1` | |
|
`=(-0.5) xx ((-0.4) × 1 - 0.5 × 1)-(-0.8) xx (1 × 1 - 0.5 × 0)+1 xx (1 × 1 - (-0.4) × 0)` `=(-0.5) xx (-0.4 +(-0.5))-(-0.8) xx (1 +0)+1 xx (1 +0)` `=(-0.5) xx (-0.9)-(-0.8) xx (1)+1 xx (1)` `= 0.45 +0.8 +1` `=2.25` `Adj(P)` | = | Adj | | `-0.5` | `-0.8` | `1` | | | `1` | `-0.4` | `0.5` | | | `0` | `1` | `1` | |
|
|
= | | `+((-0.4) × 1 - 0.5 × 1)` | `-(1 × 1 - 0.5 × 0)` | `+(1 × 1 - (-0.4) × 0)` | | | `-((-0.8) × 1 - 1 × 1)` | `+((-0.5) × 1 - 1 × 0)` | `-((-0.5) × 1 - (-0.8) × 0)` | | | `+((-0.8) × 0.5 - 1 × (-0.4))` | `-((-0.5) × 0.5 - 1 × 1)` | `+((-0.5) × (-0.4) - (-0.8) × 1)` | |
| T |
|
= | | `+((-0.4) - 0.5)` | `-(1 - 0)` | `+(1 - 0)` | | | `-((-0.8) - 1)` | `+((-0.5) - 0)` | `-((-0.5) - 0)` | | | `+((-0.4) - -0.4)` | `-((-0.25) - 1)` | `+(0.2 - -0.8)` | |
| T |
|
= | | `-0.9` | `-1` | `1` | | | `1.8` | `-0.5` | `0.5` | | | `0` | `1.25` | `1` | |
| T |
|
= | | `-0.9` | `1.8` | `0` | | | `-1` | `-0.5` | `1.25` | | | `1` | `0.5` | `1` | |
|
`"Now, "P^(-1)=1/|P| × Adj(P)` = | `1/(2.25)` × | | `-0.9` | `1.8` | `0` | | | `-1` | `-0.5` | `1.25` | | | `1` | `0.5` | `1` | |
|
= | | `-0.4` | `0.8` | `0` | | | `-0.4444444444` | `-0.2222222222` | `0.5555555556` | | | `0.4444444444` | `0.2222222222` | `0.4444444444` | |
|
`:.P^-1` | = | | `-0.4` | `0.8` | `0` | | | `-0.4444444444` | `-0.2222222222` | `0.5555555556` | | | `0.4444444444` | `0.2222222222` | `0.4444444444` | |
|
4. Now checking `A=PDP^(-1)` ? `P×D` | = | | `-0.5` | `-0.8` | `1` | | | `1` | `-0.4` | `0.5` | | | `0` | `1` | `1` | |
| × | | `-1` | `0` | `0` | | | `0` | `-1` | `0` | | | `0` | `0` | `8` | |
|
= | | `-0.5×(-1)+(-0.8)×0+1×0` | `-0.5×0+(-0.8)×(-1)+1×0` | `-0.5×0+(-0.8)×0+1×8` | | | `1×(-1)+(-0.4)×0+0.5×0` | `1×0+(-0.4)×(-1)+0.5×0` | `1×0+(-0.4)×0+0.5×8` | | | `0×(-1)+1×0+1×0` | `0×0+1×(-1)+1×0` | `0×0+1×0+1×8` | |
|
= | | `0.5+0+0` | `0+0.8+0` | `0+0+8` | | | `-1+0+0` | `0+0.4+0` | `0+0+4` | | | `0+0+0` | `0+(-1)+0` | `0+0+8` | |
|
= | | `0.5` | `0.8` | `8` | | | `-1` | `0.4` | `4` | | | `0` | `-1` | `8` | |
|
`(P × D)×(P^-1)` | = | | `0.5` | `0.8` | `8` | | | `-1` | `0.4` | `4` | | | `0` | `-1` | `8` | |
| × | | `-0.4` | `0.8` | `0` | | | `-0.4444444444` | `-0.2222222222` | `0.5555555556` | | | `0.4444444444` | `0.2222222222` | `0.4444444444` | |
|
= | | `0.5×(-0.4)+0.8×(-0.4444444444)+8×0.4444444444` | `0.5×0.8+0.8×(-0.2222222222)+8×0.2222222222` | `0.5×0+0.8×0.5555555556+8×0.4444444444` | | | `-1×(-0.4)+0.4×(-0.4444444444)+4×0.4444444444` | `-1×0.8+0.4×(-0.2222222222)+4×0.2222222222` | `-1×0+0.4×0.5555555556+4×0.4444444444` | | | `0×(-0.4)+(-1)×(-0.4444444444)+8×0.4444444444` | `0×0.8+(-1)×(-0.2222222222)+8×0.2222222222` | `0×0+(-1)×0.5555555556+8×0.4444444444` | |
|
= | | `-0.2+(-0.3555555556)+3.5555555556` | `0.4+(-0.1777777778)+1.7777777778` | `0+0.4444444444+3.5555555556` | | | `0.4+(-0.1777777778)+1.7777777778` | `-0.8+(-0.0888888889)+0.8888888889` | `0+0.2222222222+1.7777777778` | | | `0+0.4444444444+3.5555555556` | `0+0.2222222222+1.7777777778` | `0+(-0.5555555556)+3.5555555556` | |
|
= | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`:.P*D*P^-1` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
And `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|