11. Diagonal Matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find Matrix Diagonalization ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Solution:
A can be diagonalized if there exists an invertible matrix P and diagonal matrix D such that `A=PDP^-1`
Here `A` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Find eigenvalues of the matrix `A`
`|A-lamdaI|=0`
| `(1-lamda)` | `1` | `1` | | | `-1` | `(-3-lamda)` | `-3` | | | `2` | `4` | `(4-lamda)` | |
| = 0 |
`:.(1-lamda)((-3-lamda) × (4-lamda) - (-3) × 4)-1((-1) × (4-lamda) - (-3) × 2)+1((-1) × 4 - (-3-lamda) × 2)=0`
`:.(1-lamda)((-12-lamda+lamda^2)-(-12))-1((-4+lamda)-(-6))+1((-4)-(-6-2lamda))=0`
`:.(1-lamda)(-lamda+lamda^2)-1(2+lamda)+1(2+2lamda)=0`
`:. (-lamda+2lamda^2-lamda^3)-(2+lamda)+(2+2lamda)=0`
`:.(-lamda^3+2lamda^2)=0`
`:.-lamda^2(lamda-2)=0`
`:.lamda^2=0 or(lamda-2)=0 `
`:.` The eigenvalues of the matrix `A` are given by `lamda=0,2`,
1. Eigenvectors for `lamda=0`1. Eigenvectors for `lamda=0` = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_3` = | | `2` | `4` | `4` | | | `-1` | `-3` | `-3` | | | `1` | `1` | `1` | |
|
`R_1 larr R_1-:2` = | | `1` | `2` | `2` | | | `-1` | `-3` | `-3` | | | `1` | `1` | `1` | |
|
`R_2 larr R_2+ R_1` = | | `1` | `2` | `2` | | | `0` | `-1` | `-1` | | | `1` | `1` | `1` | |
|
`R_3 larr R_3- R_1` = | | `1` | `2` | `2` | | | `0` | `-1` | `-1` | | | `0` | `-1` | `-1` | |
|
`R_2 larr R_2-:-1` = | | `1` | `2` | `2` | | | `0` | `1` | `1` | | | `0` | `-1` | `-1` | |
|
`R_1 larr R_1-2xx R_2` = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `-1` | `-1` | |
|
`R_3 larr R_3+ R_2` = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` `(A-0I)` | | = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1=0,x_2+x_3=0` `=>x_1=0,x_2=-x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1`
3. Eigenvectors for `lamda=2`
3. Eigenvectors for `lamda=2` = | | `-1` | `1` | `1` | | | `-1` | `-5` | `-3` | | | `2` | `4` | `2` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_3` = | | `2` | `4` | `2` | | | `-1` | `-5` | `-3` | | | `-1` | `1` | `1` | |
|
`R_1 larr R_1-:2` = | | `1` | `2` | `1` | | | `-1` | `-5` | `-3` | | | `-1` | `1` | `1` | |
|
`R_2 larr R_2+ R_1` = | | `1` | `2` | `1` | | | `0` | `-3` | `-2` | | | `-1` | `1` | `1` | |
|
`R_3 larr R_3+ R_1` = | | `1` | `2` | `1` | | | `0` | `-3` | `-2` | | | `0` | `3` | `2` | |
|
`R_2 larr R_2-:-3` = | | `1` | `2` | `1` | | | `0` | `1` | `0.66666667` | | | `0` | `3` | `2` | |
|
`R_1 larr R_1-2xx R_2` = | | `1` | `0` | `-0.33333333` | | | `0` | `1` | `0.66666667` | | | `0` | `3` | `2` | |
|
`R_3 larr R_3-3xx R_2` = | | `1` | `0` | `-0.33333333` | | | `0` | `1` | `0.66666667` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=2` `(A-2I)` | | = | | `1` | `0` | `-0.33333333` | | | `0` | `1` | `0.66666667` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.33333333x_3=0,x_2+0.66666667x_3=0` `=>x_1=0.33333333x_3,x_2=-0.66666667x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=2` is `v=` | | `0.33333333x_3` | | | `-0.66666667x_3` | | | `x_3` | |
|
Let `x_3=1` `v_2=` | | `0.33333333` | | | `-0.66666667` | | | `1` | |
|
`v_2=` | | `0.33333333` | | | `-0.66666667` | | | `1` | |
|
To allow diagonalization, the number of eigenvectors must equal the matrix dimentions. There are 2 eigenvectors which is less then 3 and therefore the matix cannot be diagonalized. = not diagonalizable
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|
|
|