|
|
Home > Matrix & Vector calculators > LU decomposition using Doolittle's method of Matrix example
|
|
9. LU decomposition using Doolittle's method of matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find LU decomposition using Doolittle's method of Matrix ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution: Doolittle's method for LU decomposition Let `A=LU`
| `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `1` | `0` | `0` | | | `l_(21)` | `1` | `0` | | | `l_(31)` | `l_(32)` | `1` | |
| `xx` | | `u_(11)` | `u_(12)` | `u_(13)` | | | `0` | `u_(22)` | `u_(23)` | | | `0` | `0` | `u_(33)` | |
|
| `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `u_(11)` | `u_(12)` | `u_(13)` | | | `l_(21)u_(11)` | `l_(21)u_(12) + u_(22)` | `l_(21)u_(13) + u_(23)` | | | `l_(31)u_(11)` | `l_(31)u_(12) + l_(32)u_(22)` | `l_(31)u_(13) + l_(32)u_(23) + u_(33)` | |
|
This implies `u_(11)=3`
`u_(12)=2`
`u_(13)=4`
`l_(21)u_(11)=2=>l_(21)xx3=2=>l_(21)=2/3`
`l_(21)u_(12) + u_(22)=0=>2/3xx2 + u_(22)=0=>u_(22)=-4/3`
`l_(21)u_(13) + u_(23)=2=>2/3xx4 + u_(23)=2=>u_(23)=-2/3`
`l_(31)u_(11)=4=>l_(31)xx3=4=>l_(31)=4/3`
`l_(31)u_(12) + l_(32)u_(22)=2=>4/3xx2 + l_(32)xx(-4/3)=2=>l_(32)=1/2`
`l_(31)u_(13) + l_(32)u_(23) + u_(33)=3=>4/3xx4 + 1/2xx(-2/3) + u_(33)=3=>u_(33)=-2`
`:.A=L xx U=LU`
| `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `1` | `0` | `0` | | | `2/3` | `1` | `0` | | | `4/3` | `1/2` | `1` | |
| `xx` | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `0` | `0` | `-2` | |
| = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|