2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find Matrix Eigenvalues ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Solution: `|A-lamdaI|=0`
| `(1-lamda)` | `1` | `1` | | | `-1` | `(-3-lamda)` | `-3` | | | `2` | `4` | `(4-lamda)` | |
| = 0 |
`:.(1-lamda)((-3-lamda) × (4-lamda) - (-3) × 4)-1((-1) × (4-lamda) - (-3) × 2)+1((-1) × 4 - (-3-lamda) × 2)=0`
`:.(1-lamda)((-12-lamda+lamda^2)-(-12))-1((-4+lamda)-(-6))+1((-4)-(-6-2lamda))=0`
`:.(1-lamda)(-lamda+lamda^2)-1(2+lamda)+1(2+2lamda)=0`
`:. (-lamda+2lamda^2-lamda^3)-(2+lamda)+(2+2lamda)=0`
`:.(-lamda^3+2lamda^2)=0`
`:.-lamda^2(lamda-2)=0`
`:.lamda^2=0 or(lamda-2)=0 `
`:.` The eigenvalues of the matrix `A` are given by `lamda=0,2`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|