6. Eigenvectors (Eigenspace) example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Eigenvectors ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution: `|A-lamdaI|=0`
| `(3-lamda)` | `2` | `4` | | | `2` | `(-lamda)` | `2` | | | `4` | `2` | `(3-lamda)` | |
| = 0 |
`:.(3-lamda)((-lamda) × (3-lamda) - 2 × 2)-2(2 × (3-lamda) - 2 × 4)+4(2 × 2 - (-lamda) × 4)=0`
`:.(3-lamda)((-3lamda+lamda^2)-4)-2((6-2lamda)-8)+4(4-(-4lamda))=0`
`:.(3-lamda)(-4-3lamda+lamda^2)-2(-2-2lamda)+4(4+4lamda)=0`
`:. (-12-5lamda+6lamda^2-lamda^3)-(-4-4lamda)+(16+16lamda)=0`
`:.(-lamda^3+6lamda^2+15lamda+8)=0`
`:.-(lamda+1)(lamda+1)(lamda-8)=0`
`:.` The eigenvalues of the matrix A are given by `lamda=-1,-1,8`
1. Eigenvectors for `lamda=-1`
= | | `4` | `2` | `4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
Now, reduce this matrix `R_1 larr R_1-:4`
= | | `1` `1=4-:4` `R_1 larr R_1-:4` | `1/2` `1/2=2-:4` `R_1 larr R_1-:4` | `1` `1=4-:4` `R_1 larr R_1-:4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `1/2` | `1` | | | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | `0` `0=1-2xx1/2` `R_2 larr R_2-2xx R_1` | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | | | `4` | `2` | `4` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `1/2` | `1` | | | `0` | `0` | `0` | | | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | `0` `0=2-4xx1/2` `R_3 larr R_3-4xx R_1` | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | |
|
The system associated with the eigenvalue `lamda=-1`
`(A+1I)` | | = | | `1` | `1/2` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+1/2x_2+x_3=0`
`=>x_1=-1/2x_2-x_3`
`:.` eigenvectors corresponding to the eigenvalue `lamda=-1` is
Let `x_2=1,x_3=0`
Let `x_2=0,x_3=1`
3. Eigenvectors for `lamda=8`
= | | `-5` | `2` | `4` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
Now, reduce this matrix `R_1 larr R_1-:-5`
= | | `1` `1=-5-:-5` `R_1 larr R_1-:-5` | `-2/5` `-2/5=2-:-5` `R_1 larr R_1-:-5` | `-4/5` `-4/5=4-:-5` `R_1 larr R_1-:-5` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `-2/5` | `-4/5` | | | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | `-36/5` `-36/5=-8-2xx-2/5` `R_2 larr R_2-2xx R_1` | `18/5` `18/5=2-2xx-4/5` `R_2 larr R_2-2xx R_1` | | | `4` | `2` | `-5` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `-2/5` | `-4/5` | | | `0` | `-36/5` | `18/5` | | | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | `18/5` `18/5=2-4xx-2/5` `R_3 larr R_3-4xx R_1` | `-9/5` `-9/5=-5-4xx-4/5` `R_3 larr R_3-4xx R_1` | |
|
`R_2 larr R_2xx-5/36`
= | | `1` | `-2/5` | `-4/5` | | | `0` `0=0xx-5/36` `R_2 larr R_2xx-5/36` | `1` `1=-36/5xx-5/36` `R_2 larr R_2xx-5/36` | `-1/2` `-1/2=18/5xx-5/36` `R_2 larr R_2xx-5/36` | | | `0` | `18/5` | `-9/5` | |
|
`R_1 larr R_1+2/5xx R_2`
= | | `1` `1=1+2/5xx0` `R_1 larr R_1+2/5xx R_2` | `0` `0=-2/5+2/5xx1` `R_1 larr R_1+2/5xx R_2` | `-1` `-1=-4/5+2/5xx-1/2` `R_1 larr R_1+2/5xx R_2` | | | `0` | `1` | `-1/2` | | | `0` | `18/5` | `-9/5` | |
|
`R_3 larr R_3-18/5xx R_2`
= | | `1` | `0` | `-1` | | | `0` | `1` | `-1/2` | | | `0` `0=0-18/5xx0` `R_3 larr R_3-18/5xx R_2` | `0` `0=18/5-18/5xx1` `R_3 larr R_3-18/5xx R_2` | `0` `0=-9/5-18/5xx-1/2` `R_3 larr R_3-18/5xx R_2` | |
|
The system associated with the eigenvalue `lamda=8`
`(A-8I)` | | = | | `1` | `0` | `-1` | | | `0` | `1` | `-1/2` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-x_3=0,x_2-1/2x_3=0`
`=>x_1=x_3,x_2=1/2x_3`
`:.` eigenvectors corresponding to the eigenvalue `lamda=8` is
Let `x_3=1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|