|
|
Home > Matrix & Vector calculators > Eigenvectors example
|
|
6. Eigenvectors (Eigenspace) example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Matrix Eigenvectors (Eigenspace) ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:`|A-lamdaI|=0` | `(3-lamda)` | `2` | `4` | | | `2` | `(-lamda)` | `2` | | | `4` | `2` | `(3-lamda)` | |
| = 0 |
`:.(3-lamda)((-lamda) × (3-lamda) - 2 × 2)-2(2 × (3-lamda) - 2 × 4)+4(2 × 2 - (-lamda) × 4)=0` `:.(3-lamda)((-3lamda+lamda^2)-4)-2((6-2lamda)-8)+4(4-(-4lamda))=0` `:.(3-lamda)(-4-3lamda+lamda^2)-2(-2-2lamda)+4(4+4lamda)=0` `:. (-12-5lamda+6lamda^2-lamda^3)-(-4-4lamda)+(16+16lamda)=0` `:.(-lamda^3+6lamda^2+15lamda+8)=0` `:.-(lamda+1)(lamda+1)(lamda-8)=0` `:.(lamda+1)=0 or (lamda+1)=0 or (lamda-8)=0` `:.lamda=-1 or lamda=-1 or lamda=8` `:.` The eigenvalues of the matrix `A` are given by `lamda=-1,8` 1. Eigenvectors for `lamda=-1`
1. Eigenvectors for `lamda=-1` = | | `4` | `2` | `4` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
Now, reduce this matrix `R_1 larr R_1-:4` = | | `1` | `0.5` | `1` | | | `2` | `1` | `2` | | | `4` | `2` | `4` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `4` | `2` | `4` | |
|
`R_3 larr R_3-4xx R_1` = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=-1` `(A-(-1)I)` | | = | | `1` | `0.5` | `1` | | | `0` | `0` | `0` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+0.5x_2+x_3=0` `=>x_1=-0.5x_2-x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=-1` is Let `x_2=1,x_3=0` Let `x_2=0,x_3=1` 3. Eigenvectors for `lamda=8`
3. Eigenvectors for `lamda=8` = | | `-5` | `2` | `4` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-5)` = | | `1` | `-0.4` | `-0.8` | | | `2` | `-8` | `2` | | | `4` | `2` | `-5` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `-0.4` | `-0.8` | | | `0` | `-7.2` | `3.6` | | | `4` | `2` | `-5` | |
|
`R_3 larr R_3-4xx R_1` = | | `1` | `-0.4` | `-0.8` | | | `0` | `-7.2` | `3.6` | | | `0` | `3.6` | `-1.8` | |
|
`R_2 larr R_2-:(-7.2)` = | | `1` | `-0.4` | `-0.8` | | | `0` | `1` | `-0.5` | | | `0` | `3.6` | `-1.8` | |
|
`R_1 larr R_1+0.4xx R_2` = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `3.6` | `-1.8` | |
|
`R_3 larr R_3-3.6xx R_2` = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=8` `(A-8I)` | | = | | `1` | `0` | `-1` | | | `0` | `1` | `-0.5` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-x_3=0,x_2-0.5x_3=0` `=>x_1=x_3,x_2=0.5x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=8` is Let `x_3=1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|