|
15. LQ Decomposition example
( Enter your problem )
|
- Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
- Example `[[3,-6],[4,-8],[0,1]]`
- Example `[[1,-4],[2,3],[2,2]]`
- Example `[[1,2,4],[0,0,5],[0,3,6]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[1,2,4],[0,0,5],[0,3,6]]`
Find LQ Decomposition ... `[[1,2,4],[0,0,5],[0,3,6]]`Solution:| Here `A` | = | | `1` | `2` | `4` | | | `0` | `0` | `5` | | | `0` | `3` | `6` | |
|
Suppose you want a `LQ` factorization of a matrix `A`, then you do a QR factorization of `A^T`, i.e., `A^T=UR`, where `U` is orthogonal and `R` is upper triangular. Then `A=LQ=R^TU^T` where `L=R^T` is lower triangular, and `Q=U^T` is orthogonal. | `A` | = | | `1` | `2` | `4` | | | `0` | `0` | `5` | | | `0` | `3` | `6` | |
|
| `A'` | = | | `1` | `0` | `0` | | | `2` | `0` | `3` | | | `4` | `5` | `6` | |
|
Now, UR Decomposition of `A'` by GramSchmidt Method `r_(11)=||q_1'||=sqrt((1)^2+(2)^2+(4)^2)=sqrt(21)=4.582575695` | `q_1 = 1/(||q_1'||) * q_1'` | = | `1/4.582575695 * ` | | = | | `0.2182178902` | | | `0.4364357805` | | | `0.8728715609` | |
|
| `r_(12)=q_1^T * a_2` | = | | [ | `0.2182178902` | `0.4364357805` | `0.8728715609` | ] |
| `xx` | | `=4.3643578047` |
| `q_2'` | `=a_2-r_(12) * q_1` | = | | `-4.3643578047` | | `0.2182178902` | | | `0.4364357805` | | | `0.8728715609` | |
|
| = | | `-0.9523809524` | | | `-1.9047619048` | | | `1.1904761905` | |
|
`r_(22)=||q_2'||=sqrt((-0.9523809524)^2+(-1.9047619048)^2+(1.1904761905)^2)=sqrt(5.9523809524)=2.4397501824` | `q_2 = 1/(||q_2'||) * q_2'` | = | `1/2.4397501824 * ` | | `-0.9523809524` | | | `-1.9047619048` | | | `1.1904761905` | |
| = | | `-0.3903600292` | | | `-0.7807200584` | | | `0.4879500365` | |
|
| `r_(13)=q_1^T * a_3` | = | | [ | `0.2182178902` | `0.4364357805` | `0.8728715609` | ] |
| `xx` | | `=6.5465367071` |
| `r_(23)=q_2^T * a_3` | = | | [ | `-0.3903600292` | `-0.7807200584` | `0.4879500365` | ] |
| `xx` | | `=0.5855400438` |
| `q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | `-6.5465367071` | | `0.2182178902` | | | `0.4364357805` | | | `0.8728715609` | |
| `-0.5855400438` | | `-0.3903600292` | | | `-0.7807200584` | | | `0.4879500365` | |
|
| = | |
`r_(33)=||q_3'||=sqrt((-1.2)^2+(0.6)^2+(0)^2)=sqrt(1.8)=1.3416407865` | `q_3 = 1/(||q_3'||) * q_3'` | = | `1/1.3416407865 * ` | | = | | `-0.894427191` | | | `0.4472135955` | | | `0` | |
|
| `U` | `=[q_1,q_2,q_3]` | = | | `0.2182178902` | `-0.3903600292` | `-0.894427191` | | | `0.4364357805` | `-0.7807200584` | `0.4472135955` | | | `0.8728715609` | `0.4879500365` | `0` | |
|
| `R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `4.582575695` | `4.3643578047` | `6.5465367071` | | | `0` | `2.4397501824` | `0.5855400438` | | | `0` | `0` | `1.3416407865` | |
|
Now, L and Q from R and U | `L=R^T` | = | | `4.582575695` | `0` | `0` | | | `4.3643578047` | `2.4397501824` | `0` | | | `6.5465367071` | `0.5855400438` | `1.3416407865` | |
|
| `Q=U^T` | = | | `0.2182178902` | `0.4364357805` | `0.8728715609` | | | `-0.3903600292` | `-0.7807200584` | `0.4879500365` | | | `-0.894427191` | `0.4472135955` | `0` | |
|
checking `L xx Q = A?` | `L xx Q` | = | | `4.582575695` | `0` | `0` | | | `4.3643578047` | `2.4397501824` | `0` | | | `6.5465367071` | `0.5855400438` | `1.3416407865` | |
| `xx` | | `0.2182178902` | `0.4364357805` | `0.8728715609` | | | `-0.3903600292` | `-0.7807200584` | `0.4879500365` | | | `-0.894427191` | `0.4472135955` | `0` | |
| = | | `1` | `2` | `4` | | | `0` | `0` | `5` | | | `0` | `3` | `6` | |
|
| and `A` | = | | `1` | `2` | `4` | | | `0` | `0` | `5` | | | `0` | `3` | `6` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|