|
|
Home > Matrix & Vector calculators > Null Space example (Nullity of a matrix)
|
|
24. Null Space example
( Enter your problem )
|
- Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`
- Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
- Example `[[3,-1,-1],[2,-2,1]]`
- Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
23. Column Space (Previous method) | 2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Next example) |
1. Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`
1. Find Null Space ... `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`
Solution:
| `1` | `-2` | `0` | `3` | `-4` | | | `3` | `2` | `8` | `1` | `4` | | | `2` | `3` | `7` | `2` | `3` | | | `-1` | `2` | `0` | `4` | `-3` | |
Now, reduce the matrix to reduced row echelon form `R_2 larr R_2-3xx R_1`
= | | `1` | `-2` | `0` | `3` | `-4` | | | `0` | `8` | `8` | `-8` | `16` | | | `2` | `3` | `7` | `2` | `3` | | | `-1` | `2` | `0` | `4` | `-3` | |
|
`R_3 larr R_3-2xx R_1`
= | | `1` | `-2` | `0` | `3` | `-4` | | | `0` | `8` | `8` | `-8` | `16` | | | `0` | `7` | `7` | `-4` | `11` | | | `-1` | `2` | `0` | `4` | `-3` | |
|
`R_4 larr R_4+ R_1`
= | | `1` | `-2` | `0` | `3` | `-4` | | | `0` | `8` | `8` | `-8` | `16` | | | `0` | `7` | `7` | `-4` | `11` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_2 larr R_2-:8`
= | | `1` | `-2` | `0` | `3` | `-4` | | | `0` | `1` | `1` | `-1` | `2` | | | `0` | `7` | `7` | `-4` | `11` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_1 larr R_1+2xx R_2`
= | | `1` | `0` | `2` | `1` | `0` | | | `0` | `1` | `1` | `-1` | `2` | | | `0` | `7` | `7` | `-4` | `11` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_3 larr R_3-7xx R_2`
= | | `1` | `0` | `2` | `1` | `0` | | | `0` | `1` | `1` | `-1` | `2` | | | `0` | `0` | `0` | `3` | `-3` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_3 larr R_3-:3`
= | | `1` | `0` | `2` | `1` | `0` | | | `0` | `1` | `1` | `-1` | `2` | | | `0` | `0` | `0` | `1` | `-1` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_1 larr R_1- R_3`
= | | `1` | `0` | `2` | `0` | `1` | | | `0` | `1` | `1` | `-1` | `2` | | | `0` | `0` | `0` | `1` | `-1` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_2 larr R_2+ R_3`
= | | `1` | `0` | `2` | `0` | `1` | | | `0` | `1` | `1` | `0` | `1` | | | `0` | `0` | `0` | `1` | `-1` | | | `0` | `0` | `0` | `7` | `-7` | |
|
`R_4 larr R_4-7xx R_3`
= | | `1` | `0` | `2` | `0` | `1` | | | `0` | `1` | `1` | `0` | `1` | | | `0` | `0` | `0` | `1` | `-1` | | | `0` | `0` | `0` | `0` | `0` | |
|
The rank of a matrix is the number of non all-zeros rows `:. Rank = 3`
Null Space : Now, solve the matrix equation
| `1` | `0` | `2` | `0` | `1` | | | `0` | `1` | `1` | `0` | `1` | | | `0` | `0` | `0` | `1` | `-1` | | | `0` | `0` | `0` | `0` | `0` | |
| | | `x_1` | | | `x_2` | | | `x_3` | | | `x_4` | | | `x_5` | |
| = | |
`x_1+2x_3+x_5=0`
`x_2+x_3+x_5=0`
`x_4-x_5=0`
Add equation for each free variable `x_1+2x_3+x_5=0`
`x_2+x_3+x_5=0`
`x_3=x_3`
`x_4-x_5=0`
`x_5=x_5`
Solve for each variable in terms of the free variables `x_1=-2x_3-x_5`
`x_2=-x_3-x_5`
`x_3=x_3`
`x_4=x_5`
`x_5=x_5`
Convert this into vectors
| `x_1` | | | `x_2` | | | `x_3` | | | `x_4` | | | `x_5` | |
| = | | `-2x_3-x_5` | | | `-x_3-x_5` | | | `x_3` | | | `x_5` | | | `x_5` | |
| = | `[[-2],[-1],[1],[0],[0]]` | `x_3` | `+` | `[[-1],[-1],[0],[1],[1]]` | `x_5` |
Thus, the basis for the null space is `[[-2],[-1],[1],[0],[0]],[[-1],[-1],[0],[1],[1]]`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
23. Column Space (Previous method) | 2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|