|
|
|
|
Home > Matrix & Vector calculators > Power Method for dominant eigenvalue example
|
|
|
19. Power Method for finding dominant eigenvalue example
( Enter your problem )
|
- Example `[[2,3],[5,4]]`
- Example `[[1,6,1],[1,2,0],[0,0,3]]`
- Example `[[1,2,0],[-2,1,2],[1,3,1]]`
- Example `[[3,2],[1,4]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[1,6,1],[1,2,0],[0,0,3]]` (Previous example) | 4. Example `[[3,2],[1,4]]` (Next example) |
3. Example `[[1,2,0],[-2,1,2],[1,3,1]]`
Find Power Method for finding dominant eigenvalue ... `[[1,2,0],[-2,1,2],[1,3,1]]` `x_0` = 1,1,1Solution:`1^(st)` iteration :Multiply the matrix by the vectorNormalize the resulting vectorTo normalize, divide each element of vector by its largest absolute value, which is `5` `2^(nd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `2.2` `3^(rd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `2.8182` `4^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `3.129` `5^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `3.0206` `6^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `2.9863` `7^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `2.9977` `8^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `3.0015` `9^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `3.0003` `10^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `2.9998` `:.` The dominant eigenvalue `lamda=2.9998~=3` and the dominant eigenvector is :
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[1,6,1],[1,2,0],[0,0,3]]` (Previous example) | 4. Example `[[3,2],[1,4]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|