|
|
Home > Matrix & Vector calculators > Moore-Penrose Pseudoinverse of a Matrix example
|
|
18. Moore-Penrose Pseudoinverse of a Matrix example
( Enter your problem )
|
- Example `[[4,0],[3,-5]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
- Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
- Example `[[4,0],[3,-5]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
- Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
- Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
3. Example `[[4,0],[3,-5]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))` (Previous example) | 5. Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)` (Next example) |
4. Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
Find Moore-Penrose Pseudoinverse of a Matrix ... `[[1,0,1,0],[0,1,0,1]]`
Solution:
Pseudoinverse of a matrix A is `A^(+) = A^T * (A*A^T)^(-1)`
1. Find `A'`
2. Find `A*A'`
= | | `1×1+0×0+1×1+0×0` | `1×0+0×1+1×0+0×1` | | | `0×1+1×0+0×1+1×0` | `0×0+1×1+0×0+1×1` | |
|
= | | `1+0+1+0` | `0+0+0+0` | | | `0+0+0+0` | `0+1+0+1` | |
|
3. Find the inverse matrix `(A*A')^(-1)`
`=2 × 2 - 0 × 0`
`=4 +0`
`=4`
`"Now, "A*A'^(-1)=1/|A*A'| × Adj(A*A')`
4. Find the inverse matrix `A'*(A*A')^(-1)`
= | | `1×0.5+0×0` | `1×0+0×0.5` | | | `0×0.5+1×0` | `0×0+1×0.5` | | | `1×0.5+0×0` | `1×0+0×0.5` | | | `0×0.5+1×0` | `0×0+1×0.5` | |
|
= | | `0.5+0` | `0+0` | | | `0+0` | `0+0.5` | | | `0.5+0` | `0+0` | | | `0+0` | `0+0.5` | |
|
= | | `0.5` | `0` | | | `0` | `0.5` | | | `0.5` | `0` | | | `0` | `0.5` | |
|
`:.` Moore-Penrose pseudoinverse `A^(+)=` | | `0.5` | `0` | | | `0` | `0.5` | | | `0.5` | `0` | | | `0` | `0.5` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
3. Example `[[4,0],[3,-5]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))` (Previous example) | 5. Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|