18. Moore-Penrose Pseudoinverse of a Matrix example
( Enter your problem )
|
- Example `[[4,0],[3,-5]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
- Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
- Example `[[4,0],[3,-5]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
- Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
- Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
5. Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)`
Find Moore-Penrose Pseudoinverse of a Matrix ... `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]`
Solution: Pseudoinverse of a matrix A is `A^(+) = (A^T*A)^(-1) * A^T`
1. Find `A'`
`A^T` | = | | `1` | `-2` | `3` | | | `5` | `8` | `-1` | | | `2` | `1` | `1` | | | `-1` | `4` | `-3` | |
| T |
| = | | `1` | `5` | `2` | `-1` | | | `-2` | `8` | `1` | `4` | | | `3` | `-1` | `1` | `-3` | |
|
2. Find `A'*A`
`A'×A` | = | | `1` | `5` | `2` | `-1` | | | `-2` | `8` | `1` | `4` | | | `3` | `-1` | `1` | `-3` | |
| × | | `1` | `-2` | `3` | | | `5` | `8` | `-1` | | | `2` | `1` | `1` | | | `-1` | `4` | `-3` | |
|
= | | `1×1+5×5+2×2-1×-1` | `1×-2+5×8+2×1-1×4` | `1×3+5×-1+2×1-1×-3` | | | `-2×1+8×5+1×2+4×-1` | `-2×-2+8×8+1×1+4×4` | `-2×3+8×-1+1×1+4×-3` | | | `3×1-1×5+1×2-3×-1` | `3×-2-1×8+1×1-3×4` | `3×3-1×-1+1×1-3×-3` | |
|
= | | `1+25+4+1` | `-2+40+2-4` | `3-5+2+3` | | | `-2+40+2-4` | `4+64+1+16` | `-6-8+1-12` | | | `3-5+2+3` | `-6-8+1-12` | `9+1+1+9` | |
|
= | | `31` | `36` | `3` | | | `36` | `85` | `-25` | | | `3` | `-25` | `20` | |
|
3. Find the inverse matrix `(A'*A)^(-1)`
`|A'*A|` | = | | `31` | `36` | `3` | | | `36` | `85` | `-25` | | | `3` | `-25` | `20` | |
|
`=31 xx (85 × 20 - (-25) × (-25)) -36 xx (36 × 20 - (-25) × 3) +3 xx (36 × (-25) - 85 × 3)`
`=31 xx (1700 -625) -36 xx (720 +75) +3 xx (-900 -255)`
`=31 xx (1075) -36 xx (795) +3 xx (-1155)`
`= 33325 -28620 -3465`
`=1240`
`Adj(A'*A)` | = | Adj | | `31` | `36` | `3` | | | `36` | `85` | `-25` | | | `3` | `-25` | `20` | |
|
|
= | | `+(85 × 20 - (-25) × (-25))` | `-(36 × 20 - (-25) × 3)` | `+(36 × (-25) - 85 × 3)` | | | `-(36 × 20 - 3 × (-25))` | `+(31 × 20 - 3 × 3)` | `-(31 × (-25) - 36 × 3)` | | | `+(36 × (-25) - 3 × 85)` | `-(31 × (-25) - 3 × 36)` | `+(31 × 85 - 36 × 36)` | |
| T |
|
= | | `+(1700 -625)` | `-(720 +75)` | `+(-900 -255)` | | | `-(720 +75)` | `+(620 -9)` | `-(-775 -108)` | | | `+(-900 -255)` | `-(-775 -108)` | `+(2635 -1296)` | |
| T |
|
= | | `1075` | `-795` | `-1155` | | | `-795` | `611` | `883` | | | `-1155` | `883` | `1339` | |
| T |
|
= | | `1075` | `-795` | `-1155` | | | `-795` | `611` | `883` | | | `-1155` | `883` | `1339` | |
|
`"Now, "A'*A^(-1)=1/|A'*A| × Adj(A'*A)`
= | `1/(1240)` × | | `1075` | `-795` | `-1155` | | | `-795` | `611` | `883` | | | `-1155` | `883` | `1339` | |
|
= | | `0.86693548` | `-0.64112903` | `-0.93145161` | | | `-0.64112903` | `0.49274194` | `0.71209677` | | | `-0.93145161` | `0.71209677` | `1.07983871` | |
|
4. Find the inverse matrix `(A'*A)^(-1) * A'`
`((A*A')^-1)×A'` | = | | `0.86693548` | `-0.64112903` | `-0.93145161` | | | `-0.64112903` | `0.49274194` | `0.71209677` | | | `-0.93145161` | `0.71209677` | `1.07983871` | |
| × | | `1` | `5` | `2` | `-1` | | | `-2` | `8` | `1` | `4` | | | `3` | `-1` | `1` | `-3` | |
|
= | | `0.86693548×1-0.64112903×-2-0.93145161×3` | `0.86693548×5-0.64112903×8-0.93145161×-1` | `0.86693548×2-0.64112903×1-0.93145161×1` | `0.86693548×-1-0.64112903×4-0.93145161×-3` | | | `-0.64112903×1+0.49274194×-2+0.71209677×3` | `-0.64112903×5+0.49274194×8+0.71209677×-1` | `-0.64112903×2+0.49274194×1+0.71209677×1` | `-0.64112903×-1+0.49274194×4+0.71209677×-3` | | | `-0.93145161×1+0.71209677×-2+1.07983871×3` | `-0.93145161×5+0.71209677×8+1.07983871×-1` | `-0.93145161×2+0.71209677×1+1.07983871×1` | `-0.93145161×-1+0.71209677×4+1.07983871×-3` | |
|
= | | `0.86693548+1.28225806-2.79435484` | `4.33467742-5.12903226+0.93145161` | `1.73387097-0.64112903-0.93145161` | `-0.86693548-2.56451613+2.79435484` | | | `-0.64112903-0.98548387+2.13629032` | `-3.20564516+3.94193548-0.71209677` | `-1.28225806+0.49274194+0.71209677` | `0.64112903+1.97096774-2.13629032` | | | `-0.93145161-1.42419355+3.23951613` | `-4.65725806+5.69677419-1.07983871` | `-1.86290323+0.71209677+1.07983871` | `0.93145161+2.8483871-3.23951613` | |
|
= | | `-0.64516129` | `0.13709677` | `0.16129032` | `-0.63709677` | | | `0.50967742` | `0.02419355` | `-0.07741935` | `0.47580645` | | | `0.88387097` | `-0.04032258` | `-0.07096774` | `0.54032258` | |
|
`:.` Moore-Penrose pseudoinverse `A^(+)=` | | `-0.64516129` | `0.13709677` | `0.16129032` | `-0.63709677` | | | `0.50967742` | `0.02419355` | `-0.07741935` | `0.47580645` | | | `0.88387097` | `-0.04032258` | `-0.07096774` | `0.54032258` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|