Home > Matrix & Vector calculators > Moore-Penrose Pseudoinverse of a Matrix example

18. Moore-Penrose Pseudoinverse of a Matrix example ( Enter your problem )
  1. Example `[[4,0],[3,-5]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
  2. Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=V Sigma^(+) U^T)`
  3. Example `[[4,0],[3,-5]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
  4. Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
  5. Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)`
Other related methods
  1. Transforming matrix to Row Echelon Form
  2. Transforming matrix to Reduced Row Echelon Form
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. determinants using Sarrus Rule
  21. determinants using properties of determinants
  22. Row Space
  23. Column Space
  24. Null Space

4. Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
(Previous example)
19. Power Method for dominant eigenvalue
(Next method)

5. Example `[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]` `("Formula " A^(+)=(A^T*A)^(-1) * A^T)`





Find Moore-Penrose Pseudoinverse of a Matrix ...
`[[1,-2,3],[5,8,-1],[2,1,1],[-1,4,-3]]`


Solution:
Pseudoinverse of a matrix A is `A^(+) = (A^T*A)^(-1) * A^T`

1. Find `A'`

`A^T` = 
`1``-2``3`
`5``8``-1`
`2``1``1`
`-1``4``-3`
T
 = 
`1``5``2``-1`
`-2``8``1``4`
`3``-1``1``-3`


2. Find `A'*A`

`A'×A`=
`1``5``2``-1`
`-2``8``1``4`
`3``-1``1``-3`
×
`1``-2``3`
`5``8``-1`
`2``1``1`
`-1``4``-3`


=
`1×1+5×5+2×2-1×-1``1×-2+5×8+2×1-1×4``1×3+5×-1+2×1-1×-3`
`-2×1+8×5+1×2+4×-1``-2×-2+8×8+1×1+4×4``-2×3+8×-1+1×1+4×-3`
`3×1-1×5+1×2-3×-1``3×-2-1×8+1×1-3×4``3×3-1×-1+1×1-3×-3`


=
`1+25+4+1``-2+40+2-4``3-5+2+3`
`-2+40+2-4``4+64+1+16``-6-8+1-12`
`3-5+2+3``-6-8+1-12``9+1+1+9`


=
`31``36``3`
`36``85``-25`
`3``-25``20`


3. Find the inverse matrix `(A'*A)^(-1)`

`|A'*A|` = 
 `31`  `36`  `3` 
 `36`  `85`  `-25` 
 `3`  `-25`  `20` 


 =
 `31` × 
 `85`  `-25` 
 `-25`  `20` 
 `-36` × 
 `36`  `-25` 
 `3`  `20` 
 `+3` × 
 `36`  `85` 
 `3`  `-25` 


`=31 xx (85 × 20 - (-25) × (-25)) -36 xx (36 × 20 - (-25) × 3) +3 xx (36 × (-25) - 85 × 3)`

`=31 xx (1700 -625) -36 xx (720 +75) +3 xx (-900 -255)`

`=31 xx (1075) -36 xx (795) +3 xx (-1155)`

`= 33325 -28620 -3465`

`=1240`


`Adj(A'*A)` = 
Adj
`31``36``3`
`36``85``-25`
`3``-25``20`


 = 
 + 
 `85`  `-25` 
 `-25`  `20` 
 - 
 `36`  `-25` 
 `3`  `20` 
 + 
 `36`  `85` 
 `3`  `-25` 
 - 
 `36`  `3` 
 `-25`  `20` 
 + 
 `31`  `3` 
 `3`  `20` 
 - 
 `31`  `36` 
 `3`  `-25` 
 + 
 `36`  `3` 
 `85`  `-25` 
 - 
 `31`  `3` 
 `36`  `-25` 
 + 
 `31`  `36` 
 `36`  `85` 
T


 = 
`+(85 × 20 - (-25) × (-25))``-(36 × 20 - (-25) × 3)``+(36 × (-25) - 85 × 3)`
`-(36 × 20 - 3 × (-25))``+(31 × 20 - 3 × 3)``-(31 × (-25) - 36 × 3)`
`+(36 × (-25) - 3 × 85)``-(31 × (-25) - 3 × 36)``+(31 × 85 - 36 × 36)`
T


 = 
`+(1700 -625)``-(720 +75)``+(-900 -255)`
`-(720 +75)``+(620 -9)``-(-775 -108)`
`+(-900 -255)``-(-775 -108)``+(2635 -1296)`
T


 = 
`1075``-795``-1155`
`-795``611``883`
`-1155``883``1339`
T


 = 
`1075``-795``-1155`
`-795``611``883`
`-1155``883``1339`


`"Now, "A'*A^(-1)=1/|A'*A| × Adj(A'*A)`

 = `1/(1240)` ×
`1075``-795``-1155`
`-795``611``883`
`-1155``883``1339`


 = 
`0.86693548``-0.64112903``-0.93145161`
`-0.64112903``0.49274194``0.71209677`
`-0.93145161``0.71209677``1.07983871`


4. Find the inverse matrix `(A'*A)^(-1) * A'`

`((A*A')^-1)×A'`=
`0.86693548``-0.64112903``-0.93145161`
`-0.64112903``0.49274194``0.71209677`
`-0.93145161``0.71209677``1.07983871`
×
`1``5``2``-1`
`-2``8``1``4`
`3``-1``1``-3`


=
`0.86693548×1-0.64112903×-2-0.93145161×3``0.86693548×5-0.64112903×8-0.93145161×-1``0.86693548×2-0.64112903×1-0.93145161×1``0.86693548×-1-0.64112903×4-0.93145161×-3`
`-0.64112903×1+0.49274194×-2+0.71209677×3``-0.64112903×5+0.49274194×8+0.71209677×-1``-0.64112903×2+0.49274194×1+0.71209677×1``-0.64112903×-1+0.49274194×4+0.71209677×-3`
`-0.93145161×1+0.71209677×-2+1.07983871×3``-0.93145161×5+0.71209677×8+1.07983871×-1``-0.93145161×2+0.71209677×1+1.07983871×1``-0.93145161×-1+0.71209677×4+1.07983871×-3`


=
`0.86693548+1.28225806-2.79435484``4.33467742-5.12903226+0.93145161``1.73387097-0.64112903-0.93145161``-0.86693548-2.56451613+2.79435484`
`-0.64112903-0.98548387+2.13629032``-3.20564516+3.94193548-0.71209677``-1.28225806+0.49274194+0.71209677``0.64112903+1.97096774-2.13629032`
`-0.93145161-1.42419355+3.23951613``-4.65725806+5.69677419-1.07983871``-1.86290323+0.71209677+1.07983871``0.93145161+2.8483871-3.23951613`


=
`-0.64516129``0.13709677``0.16129032``-0.63709677`
`0.50967742``0.02419355``-0.07741935``0.47580645`
`0.88387097``-0.04032258``-0.07096774``0.54032258`


`:.` Moore-Penrose pseudoinverse `A^(+)=`
`-0.64516129``0.13709677``0.16129032``-0.63709677`
`0.50967742``0.02419355``-0.07741935``0.47580645`
`0.88387097``-0.04032258``-0.07096774``0.54032258`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example `[[1,0,1,0],[0,1,0,1]]` `("Formula " A^(+)=A^T * (A*A^T)^(-1))`
(Previous example)
19. Power Method for dominant eigenvalue
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.