|
|
Home > Matrix & Vector calculators > Rank of matrix example
|
|
3. Rank of matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Rank of matrix ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution:
Rank | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Now, reduce this matrix `R_1 larr R_1-:3`
= | | `1` `1=3-:3` `R_1 larr R_1-:3` | `2/3` `2/3=2-:3` `R_1 larr R_1-:3` | `4/3` `4/3=4-:3` `R_1 larr R_1-:3` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `2/3` | `4/3` | | | `0` `0=2-2xx1` `R_2 larr R_2-2xx R_1` | `-4/3` `-4/3=0-2xx2/3` `R_2 larr R_2-2xx R_1` | `-2/3` `-2/3=2-2xx4/3` `R_2 larr R_2-2xx R_1` | | | `4` | `2` | `3` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `2/3` | `4/3` | | | `0` | `-4/3` | `-2/3` | | | `0` `0=4-4xx1` `R_3 larr R_3-4xx R_1` | `-2/3` `-2/3=2-4xx2/3` `R_3 larr R_3-4xx R_1` | `-7/3` `-7/3=3-4xx4/3` `R_3 larr R_3-4xx R_1` | |
|
`R_2 larr R_2xx-3/4`
= | | `1` | `2/3` | `4/3` | | | `0` `0=0xx-3/4` `R_2 larr R_2xx-3/4` | `1` `1=-4/3xx-3/4` `R_2 larr R_2xx-3/4` | `1/2` `1/2=-2/3xx-3/4` `R_2 larr R_2xx-3/4` | | | `0` | `-2/3` | `-7/3` | |
|
`R_3 larr R_3+2/3xx R_2`
= | | `1` | `2/3` | `4/3` | | | `0` | `1` | `1/2` | | | `0` `0=0+2/3xx0` `R_3 larr R_3+2/3xx R_2` | `0` `0=-2/3+2/3xx1` `R_3 larr R_3+2/3xx R_2` | `-2` `-2=-7/3+2/3xx1/2` `R_3 larr R_3+2/3xx R_2` | |
|
`R_3 larr R_3-:-2`
= | | `1` | `2/3` | `4/3` | | | `0` | `1` | `1/2` | | | `0` `0=0-:-2` `R_3 larr R_3-:-2` | `0` `0=0-:-2` `R_3 larr R_3-:-2` | `1` `1=-2-:-2` `R_3 larr R_3-:-2` | |
|
The rank of a matrix is the number of non all-zeros rows `:. Rank = 3`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|