1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Transforming matrix to Reduced Row Echelon Form ... `[[3,2,4],[2,0,2],[4,2,3]]`
Solution: Reduced row echelon form Given matrix
| | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`R_1 larr R_1-:3`
= | | `1` | `2/3` | `4/3` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`R_2 larr R_2-2xx R_1`
= | | `1` | `2/3` | `4/3` | | | `0` | `-4/3` | `-2/3` | | | `4` | `2` | `3` | |
|
`R_3 larr R_3-4xx R_1`
= | | `1` | `2/3` | `4/3` | | | `0` | `-4/3` | `-2/3` | | | `0` | `-2/3` | `-7/3` | |
|
`R_2 larr R_2xx-3/4`
= | | `1` | `2/3` | `4/3` | | | `0` | `1` | `1/2` | | | `0` | `-2/3` | `-7/3` | |
|
`R_1 larr R_1-2/3xx R_2`
= | | `1` | `0` | `1` | | | `0` | `1` | `1/2` | | | `0` | `-2/3` | `-7/3` | |
|
`R_3 larr R_3+2/3xx R_2`
= | | `1` | `0` | `1` | | | `0` | `1` | `1/2` | | | `0` | `0` | `-2` | |
|
`R_3 larr R_3-:-2`
= | | `1` | `0` | `1` | | | `0` | `1` | `1/2` | | | `0` | `0` | `1` | |
|
`R_1 larr R_1- R_3`
= | | `1` | `0` | `0` | | | `0` | `1` | `1/2` | | | `0` | `0` | `1` | |
|
`R_2 larr R_2-1/2xx R_3`
= | | `1` | `0` | `0` | | | `0` | `1` | `0` | | | `0` | `0` | `1` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|