17. SVD - Singular Value Decomposition example
( Enter your problem )
|
- Example `[[4,0],[3,-5]]`
- Example `[[1,0,1,0],[0,1,0,1]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[1,0,1,0],[0,1,0,1]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find SVD - Singular Value Decomposition ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Solution:
`A = ` | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Here we are trying to find out two solutions using `A*A'` and `A'*A`
`1^"st"` Solution using `A*A'` for normalized vectors `u_i`
`A * A'``A^T` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| T |
| = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
`A×(A^T)` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| × | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
= | | `1×1+1×1+1×1` | `1×-1+1×-3+1×-3` | `1×2+1×4+1×4` | | | `-1×1-3×1-3×1` | `-1×-1-3×-3-3×-3` | `-1×2-3×4-3×4` | | | `2×1+4×1+4×1` | `2×-1+4×-3+4×-3` | `2×2+4×4+4×4` | |
|
= | | `1+1+1` | `-1-3-3` | `2+4+4` | | | `-1-3-3` | `1+9+9` | `-2-12-12` | | | `2+4+4` | `-2-12-12` | `4+16+16` | |
|
= | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
`A * A' = ` | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
Find Eigen vector for `A * A'`
`|A * A'-lamdaI|=0`
| `(3-lamda)` | `-7` | `10` | | | `-7` | `(19-lamda)` | `-26` | | | `10` | `-26` | `(36-lamda)` | |
| = 0 |
`:.(3-lamda)((19-lamda) × (36-lamda) - (-26) × (-26))-(-7)((-7) × (36-lamda) - (-26) × 10)+10((-7) × (-26) - (19-lamda) × 10)=0`
`:.(3-lamda)((684-55lamda+lamda^2)-676)+7((-252+7lamda)-(-260))+10(182-(190-10lamda))=0`
`:.(3-lamda)(8-55lamda+lamda^2)+7(8+7lamda)+10(-8+10lamda)=0`
`:. (24-173lamda+58lamda^2-lamda^3)+(56+49lamda)+(-80+100lamda)=0`
`:.(-lamda^3+58lamda^2-24lamda)=0`
`:.-lamda(lamda-0.41678814)(lamda-57.58321186)=0`
`:.lamda=0 or(lamda-0.41678814)=0 or(lamda-57.58321186)=0 `
`:.` The eigenvalues of the matrix `A * A'` are given by `lamda=0,0.41678814,57.58321186`,
1. Eigenvectors for `lamda=57.58321186`
1. Eigenvectors for `lamda=57.58321186` `A * A'-lamdaI = ` | | - `57.58321186` | |
= | | - | | 57.58321186 | 0 | 0 | | | 0 | 57.58321186 | 0 | | | 0 | 0 | 57.58321186 | |
|
= | | `-54.58321186` | `-7` | `10` | | | `-7` | `-38.58321186` | `-26` | | | `10` | `-26` | `-21.58321186` | |
|
Now, reduce this matrix `R_1 larr R_1-:-54.58321186` = | | `1` | `0.12824456` | `-0.18320651` | | | `-7` | `-38.58321186` | `-26` | | | `10` | `-26` | `-21.58321186` | |
|
`R_2 larr R_2+7xx R_1` = | | `1` | `0.12824456` | `-0.18320651` | | | `0` | `-37.68549993` | `-27.2824456` | | | `10` | `-26` | `-21.58321186` | |
|
`R_3 larr R_3-10xx R_1` = | | `1` | `0.12824456` | `-0.18320651` | | | `0` | `-37.68549993` | `-27.2824456` | | | `0` | `-27.2824456` | `-19.75114671` | |
|
`R_2 larr R_2-:-37.68549993` = | | `1` | `0.12824456` | `-0.18320651` | | | `0` | `1` | `0.72395074` | | | `0` | `-27.2824456` | `-19.75114671` | |
|
`R_1 larr R_1-0.12824456xx R_2` = | | `1` | `0` | `-0.27604926` | | | `0` | `1` | `0.72395074` | | | `0` | `-27.2824456` | `-19.75114671` | |
|
`R_3 larr R_3+27.2824456xx R_2` = | | `1` | `0` | `-0.27604926` | | | `0` | `1` | `0.72395074` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=57.58321186` `(A * A'-57.58321186I)` | | = | | `1` | `0` | `-0.27604926` | | | `0` | `1` | `0.72395074` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.27604926x_3=0,x_2+0.72395074x_3=0` `=>x_1=0.27604926x_3,x_2=-0.72395074x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=57.58321186` is `v=` | | `0.27604926x_3` | | | `-0.72395074x_3` | | | `x_3` | |
|
Let `x_3=1` `v_1=` | | `0.27604926` | | | `-0.72395074` | | | `1` | |
|
`v_1=` | | `0.27604926` | | | `-0.72395074` | | | `1` | |
|
2. Eigenvectors for `lamda=0.41678814`
2. Eigenvectors for `lamda=0.41678814` `A * A'-lamdaI = ` | | - `0.41678814` | |
= | | - | | 0.41678814 | 0 | 0 | | | 0 | 0.41678814 | 0 | | | 0 | 0 | 0.41678814 | |
|
= | | `2.58321186` | `-7` | `10` | | | `-7` | `18.58321186` | `-26` | | | `10` | `-26` | `35.58321186` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_3` = | | `10` | `-26` | `35.58321186` | | | `-7` | `18.58321186` | `-26` | | | `2.58321186` | `-7` | `10` | |
|
`R_1 larr R_1-:10` = | | `1` | `-2.6` | `3.55832119` | | | `-7` | `18.58321186` | `-26` | | | `2.58321186` | `-7` | `10` | |
|
`R_2 larr R_2+7xx R_1` = | | `1` | `-2.6` | `3.55832119` | | | `0` | `0.38321186` | `-1.0917517` | | | `2.58321186` | `-7` | `10` | |
|
`R_3 larr R_3-2.58321186xx R_1` = | | `1` | `-2.6` | `3.55832119` | | | `0` | `0.38321186` | `-1.0917517` | | | `0` | `-0.28364917` | `0.80810253` | |
|
`R_2 larr R_2-:0.38321186` = | | `1` | `-2.6` | `3.55832119` | | | `0` | `1` | `-2.84895074` | | | `0` | `-0.28364917` | `0.80810253` | |
|
`R_1 larr R_1+2.6xx R_2` = | | `1` | `0` | `-3.84895074` | | | `0` | `1` | `-2.84895074` | | | `0` | `-0.28364917` | `0.80810253` | |
|
`R_3 larr R_3+0.28364917xx R_2` = | | `1` | `0` | `-3.84895074` | | | `0` | `1` | `-2.84895074` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0.41678814` `(A * A'-0.41678814I)` | | = | | `1` | `0` | `-3.84895074` | | | `0` | `1` | `-2.84895074` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-3.84895074x_3=0,x_2-2.84895074x_3=0` `=>x_1=3.84895074x_3,x_2=2.84895074x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.41678814` is `v=` | | `3.84895074x_3` | | | `2.84895074x_3` | | | `x_3` | |
|
Let `x_3=1` `v_2=` | | `3.84895074` | | | `2.84895074` | | | `1` | |
|
`v_2=` | | `3.84895074` | | | `2.84895074` | | | `1` | |
|
3. Eigenvectors for `lamda=0`
3. Eigenvectors for `lamda=0` = | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_3` = | | `10` | `-26` | `36` | | | `-7` | `19` | `-26` | | | `3` | `-7` | `10` | |
|
`R_1 larr R_1-:10` = | | `1` | `-2.6` | `3.6` | | | `-7` | `19` | `-26` | | | `3` | `-7` | `10` | |
|
`R_2 larr R_2+7xx R_1` = | | `1` | `-2.6` | `3.6` | | | `0` | `0.8` | `-0.8` | | | `3` | `-7` | `10` | |
|
`R_3 larr R_3-3xx R_1` = | | `1` | `-2.6` | `3.6` | | | `0` | `0.8` | `-0.8` | | | `0` | `0.8` | `-0.8` | |
|
`R_2 larr R_2xx1.25` = | | `1` | `-2.6` | `3.6` | | | `0` | `1` | `-1` | | | `0` | `0.8` | `-0.8` | |
|
`R_1 larr R_1+2.6xx R_2` = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `0.8` | `-0.8` | |
|
`R_3 larr R_3-0.8xx R_2` = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` `(A * A'-0I)` | | = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+x_3=0,x_2-x_3=0` `=>x_1=-x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1`
For Eigenvector-1 `(0.27604926,-0.72395074,1)`, Length L = `sqrt(0.27604926^2+(-0.72395074)^2+1^2)=1.26503275`
So, normalizing gives `u_1=(0.27604926/1.26503275,(-0.72395074)/1.26503275,1/1.26503275)=(0.21821511,-0.57227826,0.79049337)`
For Eigenvector-2 `(3.84895074,2.84895074,1)`, Length L = `sqrt(3.84895074^2+2.84895074^2+1^2)=4.89192622`
So, normalizing gives `u_2=(3.84895074/4.89192622,2.84895074/4.89192622,1/4.89192622)=(0.78679656,0.58237811,0.20441846)`
For Eigenvector-3 `(-1,1,1)`, Length L = `sqrt((-1)^2+1^2+1^2)=1.73205081`
So, normalizing gives `u_3=((-1)/1.73205081,1/1.73205081,1/1.73205081)=(-0.57735027,0.57735027,0.57735027)`
`2^"nd"` Solution using `A'*A` for normalized vectors `v_i`
`A' * A``A^T` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| T |
| = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
`(A^T)×A` | = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
| × | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
= | | `1×1-1×-1+2×2` | `1×1-1×-3+2×4` | `1×1-1×-3+2×4` | | | `1×1-3×-1+4×2` | `1×1-3×-3+4×4` | `1×1-3×-3+4×4` | | | `1×1-3×-1+4×2` | `1×1-3×-3+4×4` | `1×1-3×-3+4×4` | |
|
= | | `1+1+4` | `1+3+8` | `1+3+8` | | | `1+3+8` | `1+9+16` | `1+9+16` | | | `1+3+8` | `1+9+16` | `1+9+16` | |
|
= | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
`A' * A = ` | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
Find Eigen vector for `A' * A`
`|A' * A-lamdaI|=0`
| `(6-lamda)` | `12` | `12` | | | `12` | `(26-lamda)` | `26` | | | `12` | `26` | `(26-lamda)` | |
| = 0 |
`:.(6-lamda)((26-lamda) × (26-lamda) - 26 × 26)-12(12 × (26-lamda) - 26 × 12)+12(12 × 26 - (26-lamda) × 12)=0`
`:.(6-lamda)((676-52lamda+lamda^2)-676)-12((312-12lamda)-312)+12(312-(312-12lamda))=0`
`:.(6-lamda)(-52lamda+lamda^2)-12(-12lamda)+12(12lamda)=0`
`:. (-312lamda+58lamda^2-lamda^3)-(-144lamda)+(144lamda)=0`
`:.(-lamda^3+58lamda^2-24lamda)=0`
`:.-lamda(lamda-0.41678814)(lamda-57.58321186)=0`
`:.lamda=0 or(lamda-0.41678814)=0 or(lamda-57.58321186)=0 `
`:.` The eigenvalues of the matrix `A' * A` are given by `lamda=0,0.41678814,57.58321186`,
1. Eigenvectors for `lamda=57.58321186`
1. Eigenvectors for `lamda=57.58321186` `A' * A-lamdaI = ` | | - `57.58321186` | |
= | | - | | 57.58321186 | 0 | 0 | | | 0 | 57.58321186 | 0 | | | 0 | 0 | 57.58321186 | |
|
= | | `-51.58321186` | `12` | `12` | | | `12` | `-31.58321186` | `26` | | | `12` | `26` | `-31.58321186` | |
|
Now, reduce this matrix `R_1 larr R_1-:-51.58321186` = | | `1` | `-0.23263383` | `-0.23263383` | | | `12` | `-31.58321186` | `26` | | | `12` | `26` | `-31.58321186` | |
|
`R_2 larr R_2-12xx R_1` = | | `1` | `-0.23263383` | `-0.23263383` | | | `0` | `-28.79160593` | `28.79160593` | | | `12` | `26` | `-31.58321186` | |
|
`R_3 larr R_3-12xx R_1` = | | `1` | `-0.23263383` | `-0.23263383` | | | `0` | `-28.79160593` | `28.79160593` | | | `0` | `28.79160593` | `-28.79160593` | |
|
`R_2 larr R_2-:-28.79160593` = | | `1` | `-0.23263383` | `-0.23263383` | | | `0` | `1` | `-1` | | | `0` | `28.79160593` | `-28.79160593` | |
|
`R_1 larr R_1+0.23263383xx R_2` = | | `1` | `0` | `-0.46526765` | | | `0` | `1` | `-1` | | | `0` | `28.79160593` | `-28.79160593` | |
|
`R_3 larr R_3-28.79160593xx R_2` = | | `1` | `0` | `-0.46526765` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=57.58321186` `(A' * A-57.58321186I)` | | = | | `1` | `0` | `-0.46526765` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.46526765x_3=0,x_2-x_3=0` `=>x_1=0.46526765x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=57.58321186` is `v=` | | `0.46526765x_3` | | | `x_3` | | | `x_3` | |
|
Let `x_3=1`
2. Eigenvectors for `lamda=0.41678814`
2. Eigenvectors for `lamda=0.41678814` `A' * A-lamdaI = ` | | - `0.41678814` | |
= | | - | | 0.41678814 | 0 | 0 | | | 0 | 0.41678814 | 0 | | | 0 | 0 | 0.41678814 | |
|
= | | `5.58321186` | `12` | `12` | | | `12` | `25.58321186` | `26` | | | `12` | `26` | `25.58321186` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_2` = | | `12` | `25.58321186` | `26` | | | `5.58321186` | `12` | `12` | | | `12` | `26` | `25.58321186` | |
|
`R_1 larr R_1-:12` = | | `1` | `2.13193432` | `2.16666667` | | | `5.58321186` | `12` | `12` | | | `12` | `26` | `25.58321186` | |
|
`R_2 larr R_2-5.58321186xx R_1` = | | `1` | `2.13193432` | `2.16666667` | | | `0` | `0.09695902` | `-0.09695902` | | | `12` | `26` | `25.58321186` | |
|
`R_3 larr R_3-12xx R_1` = | | `1` | `2.13193432` | `2.16666667` | | | `0` | `0.09695902` | `-0.09695902` | | | `0` | `0.41678814` | `-0.41678814` | |
|
interchanging rows `R_2 harr R_3` = | | `1` | `2.13193432` | `2.16666667` | | | `0` | `0.41678814` | `-0.41678814` | | | `0` | `0.09695902` | `-0.09695902` | |
|
`R_2 larr R_2-:0.41678814` = | | `1` | `2.13193432` | `2.16666667` | | | `0` | `1` | `-1` | | | `0` | `0.09695902` | `-0.09695902` | |
|
`R_1 larr R_1-2.13193432xx R_2` = | | `1` | `0` | `4.29860099` | | | `0` | `1` | `-1` | | | `0` | `0.09695902` | `-0.09695902` | |
|
`R_3 larr R_3-0.09695902xx R_2` = | | `1` | `0` | `4.29860099` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0.41678814` `(A' * A-0.41678814I)` | | = | | `1` | `0` | `4.29860099` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+4.29860099x_3=0,x_2-x_3=0` `=>x_1=-4.29860099x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.41678814` is `v=` | | `-4.29860099x_3` | | | `x_3` | | | `x_3` | |
|
Let `x_3=1`
3. Eigenvectors for `lamda=0`
3. Eigenvectors for `lamda=0` = | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_2` = | | `12` | `26` | `26` | | | `6` | `12` | `12` | | | `12` | `26` | `26` | |
|
`R_1 larr R_1-:12` = | | `1` | `2.16666667` | `2.16666667` | | | `6` | `12` | `12` | | | `12` | `26` | `26` | |
|
`R_2 larr R_2-6xx R_1` = | | `1` | `2.16666667` | `2.16666667` | | | `0` | `-1` | `-1` | | | `12` | `26` | `26` | |
|
`R_3 larr R_3-12xx R_1` = | | `1` | `2.16666667` | `2.16666667` | | | `0` | `-1` | `-1` | | | `0` | `0` | `0` | |
|
`R_2 larr R_2-:-1` = | | `1` | `2.16666667` | `2.16666667` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
|
`R_1 larr R_1-2.16666667xx R_2` = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` `(A' * A-0I)` | | = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1=0,x_2+x_3=0` `=>x_1=0,x_2=-x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1`
For Eigenvector-1 `(0.46526765,1,1)`, Length L = `sqrt(0.46526765^2+1^2+1^2)=1.48878272`
So, normalizing gives `v_1=(0.46526765/1.48878272,1/1.48878272,1/1.48878272)=(0.31251549,0.67168969,0.67168969)`
For Eigenvector-2 `(-4.29860099,1,1)`, Length L = `sqrt((-4.29860099)^2+1^2+1^2)=4.52525916`
So, normalizing gives `v_2=((-4.29860099)/4.52525916,1/4.52525916,1/4.52525916)=(-0.94991267,0.22098182,0.22098182)`
For Eigenvector-3 `(0,-1,1)`, Length L = `sqrt(0^2+(-1)^2+1^2)=1.41421356`
So, normalizing gives `v_3=(0/1.41421356,(-1)/1.41421356,1/1.41421356)=(0,-0.70710678,0.70710678)`
`1^"st"` SVD Solution using `A*A'`
`:. Sigma = ` | | `sqrt(57.58321186)` | `0` | `0` | | | `0` | `sqrt(0.41678814)` | `0` | | | `0` | `0` | `sqrt(0)` | |
| `=` | | `7.58836029` | `0` | `0` | | | `0` | `0.64559131` | `0` | | | `0` | `0` | `0` | |
|
`:. U = ` | `[u_1,u_2,u_3]` | `=` | | `0.21821511` | `0.78679656` | `-0.57735027` | | | `-0.57227826` | `0.58237811` | `0.57735027` | | | `0.79049337` | `0.20441846` | `0.57735027` | |
|
`V` is found using formula `v_i=1/sigma_i A^T*u_i`
`:. V = ` | | `0.31251549` | `0.94991267` | `0` | | | `0.67168969` | `-0.2209818` | `-0.70710678` | | | `0.67168969` | `-0.2209818` | `0.70710678` | |
|
`2^"nd"` SVD Solution using `A'*A`
`:. Sigma = ` | | `sqrt(57.58321186)` | `0` | `0` | | | `0` | `sqrt(0.41678814)` | `0` | | | `0` | `0` | `sqrt(0)` | |
| `=` | | `7.58836029` | `0` | `0` | | | `0` | `0.64559131` | `0` | | | `0` | `0` | `0` | |
|
`:. V = ` | `[v_1,v_2,v_3]` | `=` | | `0.31251549` | `-0.94991267` | `0` | | | `0.67168969` | `0.22098182` | `-0.70710678` | | | `0.67168969` | `0.22098182` | `0.70710678` | |
|
`U` is found using formula `u_i=1/sigma_i A*v_i`
`:. U = ` | | `0.21821511` | `-0.78679657` | `-0.57735027` | | | `-0.57227826` | `-0.58237811` | `0.57735027` | | | `0.79049337` | `-0.20441846` | `0.57735027` | |
|
Verify `1^"st"` Solution `A = U Sigma V^T``U×Sigma` | = | | `0.218215108` | `0.786796564` | `-0.577350269` | | | `-0.572278258` | `0.582378109` | `0.577350269` | | | `0.790493366` | `0.204418455` | `0.577350269` | |
| × | | `7.588360288` | `0` | `0` | | | `0` | `0.645591314` | `0` | | | `0` | `0` | `0` | |
|
= | | `0.218215108×7.588360288+0.786796564×0-0.577350269×0` | `0.218215108×0+0.786796564×0.645591314-0.577350269×0` | `0.218215108×0+0.786796564×0-0.577350269×0` | | | `-0.572278258×7.588360288+0.582378109×0+0.577350269×0` | `-0.572278258×0+0.582378109×0.645591314+0.577350269×0` | `-0.572278258×0+0.582378109×0+0.577350269×0` | | | `0.790493366×7.588360288+0.204418455×0+0.577350269×0` | `0.790493366×0+0.204418455×0.645591314+0.577350269×0` | `0.790493366×0+0.204418455×0+0.577350269×0` | |
|
= | | `1.65589486+0+0` | `0+0.507949028+0` | `0+0+0` | | | `-4.342653607+0+0` | `0+0.375978249+0` | `0+0+0` | | | `5.998548466+0+0` | `0+0.131970779+0` | `0+0+0` | |
|
= | | `1.65589486` | `0.507949028` | `0` | | | `-4.342653607` | `0.375978249` | `0` | | | `5.998548466` | `0.131970779` | `0` | |
|
`(U × Sigma)×(V^T)` | = | | `1.65589486` | `0.507949028` | `0` | | | `-4.342653607` | `0.375978249` | `0` | | | `5.998548466` | `0.131970779` | `0` | |
| × | | `0.312515487` | `0.67168969` | `0.67168969` | | | `0.949912673` | `-0.220981799` | `-0.220981799` | | | `0` | `-0.707106781` | `0.707106781` | |
|
= | | `1.65589486×0.312515487+0.507949028×0.949912673+0×0` | `1.65589486×0.67168969+0.507949028×-0.220981799+0×-0.707106781` | `1.65589486×0.67168969+0.507949028×-0.220981799+0×0.707106781` | | | `-4.342653607×0.312515487+0.375978249×0.949912673+0×0` | `-4.342653607×0.67168969+0.375978249×-0.220981799+0×-0.707106781` | `-4.342653607×0.67168969+0.375978249×-0.220981799+0×0.707106781` | | | `5.998548466×0.312515487+0.131970779×0.949912673+0×0` | `5.998548466×0.67168969+0.131970779×-0.220981799+0×-0.707106781` | `5.998548466×0.67168969+0.131970779×-0.220981799+0×0.707106781` | |
|
= | | `0.517492789+0.482507219+0` | `1.112247505-0.11224749+0` | `1.112247505-0.11224749+0` | | | `-1.357146507+0.357146503+0` | `-2.916915655-0.08308435+0` | `-2.916915655-0.08308435+0` | | | `1.874639295+0.125360715+0` | `4.02916316-0.02916314+0` | `4.02916316-0.02916314+0` | |
|
= | | `1.000000007` | `1.000000015` | `1.000000015` | | | `-1.000000004` | `-3.000000005` | `-3.000000005` | | | `2.000000011` | `4.00000002` | `4.00000002` | |
|
`1^"st"` Solution is possible. `1^"st"` Solution is possible.
Verify `2^"nd"` Solution `A = U Sigma V^T``U×Sigma` | = | | `0.218215109` | `-0.786796568` | `-0.577350269` | | | `-0.572278261` | `-0.582378112` | `0.577350269` | | | `0.79049337` | `-0.204418457` | `0.577350269` | |
| × | | `7.588360288` | `0` | `0` | | | `0` | `0.645591314` | `0` | | | `0` | `0` | `0` | |
|
= | | `0.218215109×7.588360288-0.786796568×0-0.577350269×0` | `0.218215109×0-0.786796568×0.645591314-0.577350269×0` | `0.218215109×0-0.786796568×0-0.577350269×0` | | | `-0.572278261×7.588360288-0.582378112×0+0.577350269×0` | `-0.572278261×0-0.582378112×0.645591314+0.577350269×0` | `-0.572278261×0-0.582378112×0+0.577350269×0` | | | `0.79049337×7.588360288-0.204418457×0+0.577350269×0` | `0.79049337×0-0.204418457×0.645591314+0.577350269×0` | `0.79049337×0-0.204418457×0+0.577350269×0` | |
|
= | | `1.655894867+0+0` | `0-0.50794903+0` | `0+0+0` | | | `-4.342653629+0+0` | `0-0.375978251+0` | `0+0+0` | | | `5.998548497+0+0` | `0-0.13197078+0` | `0+0+0` | |
|
= | | `1.655894867` | `-0.50794903` | `0` | | | `-4.342653629` | `-0.375978251` | `0` | | | `5.998548497` | `-0.13197078` | `0` | |
|
`(U × Sigma)×(V^T)` | = | | `1.655894867` | `-0.50794903` | `0` | | | `-4.342653629` | `-0.375978251` | `0` | | | `5.998548497` | `-0.13197078` | `0` | |
| × | | `0.312515485` | `0.671689687` | `0.671689687` | | | `-0.949912665` | `0.220981819` | `0.220981819` | | | `0` | `-0.707106781` | `0.707106781` | |
|
= | | `1.655894867×0.312515485-0.50794903×-0.949912665+0×0` | `1.655894867×0.671689687-0.50794903×0.220981819+0×-0.707106781` | `1.655894867×0.671689687-0.50794903×0.220981819+0×0.707106781` | | | `-4.342653629×0.312515485-0.375978251×-0.949912665+0×0` | `-4.342653629×0.671689687-0.375978251×0.220981819+0×-0.707106781` | `-4.342653629×0.671689687-0.375978251×0.220981819+0×0.707106781` | | | `5.998548497×0.312515485-0.13197078×-0.949912665+0×0` | `5.998548497×0.671689687-0.13197078×0.220981819+0×-0.707106781` | `5.998548497×0.671689687-0.13197078×0.220981819+0×0.707106781` | |
|
= | | `0.517492788+0.482507217+0` | `1.112247505-0.112247501+0` | `1.112247505-0.112247501+0` | | | `-1.357146505+0.357146502+0` | `-2.916915657-0.083084358+0` | `-2.916915657-0.083084358+0` | | | `1.874639293+0.125360716+0` | `4.029163162-0.029163143+0` | `4.029163162-0.029163143+0` | |
|
= | | `1.000000005` | `1.000000005` | `1.000000005` | | | `-1.000000003` | `-3.000000015` | `-3.000000015` | | | `2.000000008` | `4.000000019` | `4.000000019` | |
|
`2^"nd"` Solution is possible. `2^"nd"` Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[1,0,1,0],[0,1,0,1]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|
|
|