|
17. SVD - Singular Value Decomposition example
( Enter your problem )
|
- Example `[[4,0],[3,-5]]`
- Example `[[1,0,1,0],[0,1,0,1]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[1,0,1,0],[0,1,0,1]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find SVD - Singular Value Decomposition ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`Solution:| `A = ` | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Here we are trying to find out two solutions using `A*A'` and `A'*A` `1^"st"` Solution using `A*A'` for normalized vectors `u_i``A * A'`| `A^T` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| T |
| = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
| `A×(A^T)` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| × | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
| = | | `1×1+1×1+1×1` | `1×(-1)+1×(-3)+1×(-3)` | `1×2+1×4+1×4` | | | `-1×1+(-3)×1+(-3)×1` | `-1×(-1)+(-3)×(-3)+(-3)×(-3)` | `-1×2+(-3)×4+(-3)×4` | | | `2×1+4×1+4×1` | `2×(-1)+4×(-3)+4×(-3)` | `2×2+4×4+4×4` | |
|
| = | | `1+1+1` | `-1+(-3)+(-3)` | `2+4+4` | | | `-1+(-3)+(-3)` | `1+9+9` | `-2+(-12)+(-12)` | | | `2+4+4` | `-2+(-12)+(-12)` | `4+16+16` | |
|
| = | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
| `A * A' = ` | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
Find Eigen vector for `A * A'` `|A * A'-lamdaI|=0` | `(3-lamda)` | `-7` | `10` | | | `-7` | `(19-lamda)` | `-26` | | | `10` | `-26` | `(36-lamda)` | |
| = 0 |
`:.(3-lamda)((19-lamda) × (36-lamda) - (-26) × (-26))-(-7)((-7) × (36-lamda) - (-26) × 10)+10((-7) × (-26) - (19-lamda) × 10)=0` `:.(3-lamda)((684-55lamda+lamda^2)-676)+7((-252+7lamda)-(-260))+10(182-(190-10lamda))=0` `:.(3-lamda)(8-55lamda+lamda^2)+7(8+7lamda)+10(-8+10lamda)=0` `:. (24-173lamda+58lamda^2-lamda^3)+(56+49lamda)+(-80+100lamda)=0` `:.(-lamda^3+58lamda^2-24lamda)=0` `:.-lamda(lamda-0.4168)(lamda-57.5832)=0` `:.lamda=0 or (lamda-0.4168)=0 or (lamda-57.5832)=0` `:.lamda=0 or lamda=0.4168 or lamda=57.5832` `:.` The eigenvalues of the matrix `A * A'` are given by `lamda=0,0.4168,57.5832` 1. Eigenvectors for `lamda=57.5832`
1. Eigenvectors for `lamda=57.5832` | `A * A'-lamdaI = ` | | - `57.5832` | |
| = | | - | | 57.5832 | 0 | 0 | | | 0 | 57.5832 | 0 | | | 0 | 0 | 57.5832 | |
|
| = | | `-54.5832` | `-7` | `10` | | | `-7` | `-38.5832` | `-26` | | | `10` | `-26` | `-21.5832` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-54.5832)` | = | | `1` | `0.1282` | `-0.1832` | | | `-7` | `-38.5832` | `-26` | | | `10` | `-26` | `-21.5832` | |
|
`R_2 larr R_2+7xx R_1` | = | | `1` | `0.1282` | `-0.1832` | | | `0` | `-37.6855` | `-27.2824` | | | `10` | `-26` | `-21.5832` | |
|
`R_3 larr R_3-10xx R_1` | = | | `1` | `0.1282` | `-0.1832` | | | `0` | `-37.6855` | `-27.2824` | | | `0` | `-27.2824` | `-19.7511` | |
|
`R_2 larr R_2-:(-37.6855)` | = | | `1` | `0.1282` | `-0.1832` | | | `0` | `1` | `0.724` | | | `0` | `-27.2824` | `-19.7511` | |
|
`R_1 larr R_1-0.1282xx R_2` | = | | `1` | `0` | `-0.276` | | | `0` | `1` | `0.724` | | | `0` | `-27.2824` | `-19.7511` | |
|
`R_3 larr R_3+27.2824xx R_2` | = | | `1` | `0` | `-0.276` | | | `0` | `1` | `0.724` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=57.5832` | `(A * A'-57.5832I)` | | = | | `1` | `0` | `-0.276` | | | `0` | `1` | `0.724` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.276x_3=0,x_2+0.724x_3=0` `=>x_1=0.276x_3,x_2=-0.724x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=57.5832` is | `v=` | | `0.276x_3` | | | `-0.724x_3` | | | `x_3` | |
|
Let `x_3=1` 2. Eigenvectors for `lamda=0.4168`
2. Eigenvectors for `lamda=0.4168` | `A * A'-lamdaI = ` | | - `0.4168` | |
| = | | `2.5832` | `-7` | `10` | | | `-7` | `18.5832` | `-26` | | | `10` | `-26` | `35.5832` | |
|
Now, reduce this matrix `R_1 larr R_1-:2.5832` | = | | `1` | `-2.7098` | `3.8711` | | | `-7` | `18.5832` | `-26` | | | `10` | `-26` | `35.5832` | |
|
`R_2 larr R_2+7xx R_1` | = | | `1` | `-2.7098` | `3.8711` | | | `0` | `-0.3854` | `1.098` | | | `10` | `-26` | `35.5832` | |
|
`R_3 larr R_3-10xx R_1` | = | | `1` | `-2.7098` | `3.8711` | | | `0` | `-0.3854` | `1.098` | | | `0` | `1.098` | `-3.1283` | |
|
`R_2 larr R_2-:(-0.3854)` | = | | `1` | `-2.7098` | `3.8711` | | | `0` | `1` | `-2.849` | | | `0` | `1.098` | `-3.1283` | |
|
`R_1 larr R_1+2.7098xx R_2` | = | | `1` | `0` | `-3.849` | | | `0` | `1` | `-2.849` | | | `0` | `1.098` | `-3.1283` | |
|
`R_3 larr R_3-1.098xx R_2` | = | | `1` | `0` | `-3.849` | | | `0` | `1` | `-2.849` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0.4168` | `(A * A'-0.4168I)` | | = | | `1` | `0` | `-3.849` | | | `0` | `1` | `-2.849` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-3.849x_3=0,x_2-2.849x_3=0` `=>x_1=3.849x_3,x_2=2.849x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.4168` is | `v=` | | `3.849x_3` | | | `2.849x_3` | | | `x_3` | |
|
Let `x_3=1` 3. Eigenvectors for `lamda=0`
3. Eigenvectors for `lamda=0` | = | | `3` | `-7` | `10` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
Now, reduce this matrix `R_1 larr R_1-:3` | = | | `1` | `-2.3333` | `3.3333` | | | `-7` | `19` | `-26` | | | `10` | `-26` | `36` | |
|
`R_2 larr R_2+7xx R_1` | = | | `1` | `-2.3333` | `3.3333` | | | `0` | `2.6667` | `-2.6667` | | | `10` | `-26` | `36` | |
|
`R_3 larr R_3-10xx R_1` | = | | `1` | `-2.3333` | `3.3333` | | | `0` | `2.6667` | `-2.6667` | | | `0` | `-2.6667` | `2.6667` | |
|
`R_2 larr R_2-:2.6667` | = | | `1` | `-2.3333` | `3.3333` | | | `0` | `1` | `-1` | | | `0` | `-2.6667` | `2.6667` | |
|
`R_1 larr R_1+2.3333xx R_2` | = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `-2.6667` | `2.6667` | |
|
`R_3 larr R_3+2.6667xx R_2` | = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` | `(A * A'-0I)` | | = | | `1` | `0` | `1` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+x_3=0,x_2-x_3=0` `=>x_1=-x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1` For Eigenvector-1 `(0.276,-0.724,1)`, Length L = `sqrt(|0.27605|^2+|-0.72395|^2+|1|^2)=1.265` So, normalizing gives `u_1=((0.276)/(1.265),(-0.724)/(1.265),(1)/(1.265))=(0.2182,-0.5723,0.7905)`For Eigenvector-2 `(3.849,2.849,1)`, Length L = `sqrt(|3.84895|^2+|2.84895|^2+|1|^2)=4.8919` So, normalizing gives `u_2=((3.849)/(4.8919),(2.849)/(4.8919),(1)/(4.8919))=(0.7868,0.5824,0.2044)`For Eigenvector-3 `(-1,1,1)`, Length L = `sqrt(|-1|^2+|1|^2+|1|^2)=1.7321` So, normalizing gives `u_3=((-1)/(1.7321),(1)/(1.7321),(1)/(1.7321))=(-0.5774,0.5774,0.5774)` `2^"nd"` Solution using `A'*A` for normalized vectors `v_i``A' * A`| `A^T` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| T |
| = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
|
| `(A^T)×A` | = | | `1` | `-1` | `2` | | | `1` | `-3` | `4` | | | `1` | `-3` | `4` | |
| × | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
| = | | `1×1+(-1)×(-1)+2×2` | `1×1+(-1)×(-3)+2×4` | `1×1+(-1)×(-3)+2×4` | | | `1×1+(-3)×(-1)+4×2` | `1×1+(-3)×(-3)+4×4` | `1×1+(-3)×(-3)+4×4` | | | `1×1+(-3)×(-1)+4×2` | `1×1+(-3)×(-3)+4×4` | `1×1+(-3)×(-3)+4×4` | |
|
| = | | `1+1+4` | `1+3+8` | `1+3+8` | | | `1+3+8` | `1+9+16` | `1+9+16` | | | `1+3+8` | `1+9+16` | `1+9+16` | |
|
| = | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
| `A' * A = ` | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
Find Eigen vector for `A' * A` `|A' * A-lamdaI|=0` | `(6-lamda)` | `12` | `12` | | | `12` | `(26-lamda)` | `26` | | | `12` | `26` | `(26-lamda)` | |
| = 0 |
`:.(6-lamda)((26-lamda) × (26-lamda) - 26 × 26)-12(12 × (26-lamda) - 26 × 12)+12(12 × 26 - (26-lamda) × 12)=0` `:.(6-lamda)((676-52lamda+lamda^2)-676)-12((312-12lamda)-312)+12(312-(312-12lamda))=0` `:.(6-lamda)(-52lamda+lamda^2)-12(-12lamda)+12(12lamda)=0` `:. (-312lamda+58lamda^2-lamda^3)-(-144lamda)+(144lamda)=0` `:.(-lamda^3+58lamda^2-24lamda)=0` `:.-lamda(lamda-0.4168)(lamda-57.5832)=0` `:.lamda=0 or (lamda-0.4168)=0 or (lamda-57.5832)=0` `:.lamda=0 or lamda=0.4168 or lamda=57.5832` `:.` The eigenvalues of the matrix `A' * A` are given by `lamda=0,0.4168,57.5832` 1. Eigenvectors for `lamda=57.5832`
1. Eigenvectors for `lamda=57.5832` | `A' * A-lamdaI = ` | | - `57.5832` | |
| = | | - | | 57.5832 | 0 | 0 | | | 0 | 57.5832 | 0 | | | 0 | 0 | 57.5832 | |
|
| = | | `-51.5832` | `12` | `12` | | | `12` | `-31.5832` | `26` | | | `12` | `26` | `-31.5832` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-51.5832)` | = | | `1` | `-0.2326` | `-0.2326` | | | `12` | `-31.5832` | `26` | | | `12` | `26` | `-31.5832` | |
|
`R_2 larr R_2-12xx R_1` | = | | `1` | `-0.2326` | `-0.2326` | | | `0` | `-28.7916` | `28.7916` | | | `12` | `26` | `-31.5832` | |
|
`R_3 larr R_3-12xx R_1` | = | | `1` | `-0.2326` | `-0.2326` | | | `0` | `-28.7916` | `28.7916` | | | `0` | `28.7916` | `-28.7916` | |
|
`R_2 larr R_2-:(-28.7916)` | = | | `1` | `-0.2326` | `-0.2326` | | | `0` | `1` | `-1` | | | `0` | `28.7916` | `-28.7916` | |
|
`R_1 larr R_1+0.2326xx R_2` | = | | `1` | `0` | `-0.4653` | | | `0` | `1` | `-1` | | | `0` | `28.7916` | `-28.7916` | |
|
`R_3 larr R_3-28.7916xx R_2` | = | | `1` | `0` | `-0.4653` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=57.5832` | `(A' * A-57.5832I)` | | = | | `1` | `0` | `-0.4653` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1-0.4653x_3=0,x_2-x_3=0` `=>x_1=0.4653x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=57.5832` is Let `x_3=1` 2. Eigenvectors for `lamda=0.4168`
2. Eigenvectors for `lamda=0.4168` | `A' * A-lamdaI = ` | | - `0.4168` | |
| = | | `5.5832` | `12` | `12` | | | `12` | `25.5832` | `26` | | | `12` | `26` | `25.5832` | |
|
Now, reduce this matrix `R_1 larr R_1-:5.5832` | = | | `1` | `2.1493` | `2.1493` | | | `12` | `25.5832` | `26` | | | `12` | `26` | `25.5832` | |
|
`R_2 larr R_2-12xx R_1` | = | | `1` | `2.1493` | `2.1493` | | | `0` | `-0.2084` | `0.2084` | | | `12` | `26` | `25.5832` | |
|
`R_3 larr R_3-12xx R_1` | = | | `1` | `2.1493` | `2.1493` | | | `0` | `-0.2084` | `0.2084` | | | `0` | `0.2084` | `-0.2084` | |
|
`R_2 larr R_2-:(-0.2084)` | = | | `1` | `2.1493` | `2.1493` | | | `0` | `1` | `-1` | | | `0` | `0.2084` | `-0.2084` | |
|
`R_1 larr R_1-2.1493xx R_2` | = | | `1` | `0` | `4.2986` | | | `0` | `1` | `-1` | | | `0` | `0.2084` | `-0.2084` | |
|
`R_3 larr R_3-0.2084xx R_2` | = | | `1` | `0` | `4.2986` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0.4168` | `(A' * A-0.4168I)` | | = | | `1` | `0` | `4.2986` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1+4.2986x_3=0,x_2-x_3=0` `=>x_1=-4.2986x_3,x_2=x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.4168` is Let `x_3=1` 3. Eigenvectors for `lamda=0`
3. Eigenvectors for `lamda=0` | = | | `6` | `12` | `12` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
Now, reduce this matrix `R_1 larr R_1-:6` | = | | `1` | `2` | `2` | | | `12` | `26` | `26` | | | `12` | `26` | `26` | |
|
`R_2 larr R_2-12xx R_1` | = | | `1` | `2` | `2` | | | `0` | `2` | `2` | | | `12` | `26` | `26` | |
|
`R_3 larr R_3-12xx R_1` | = | | `1` | `2` | `2` | | | `0` | `2` | `2` | | | `0` | `2` | `2` | |
|
`R_2 larr R_2-:2` | = | | `1` | `2` | `2` | | | `0` | `1` | `1` | | | `0` | `2` | `2` | |
|
`R_1 larr R_1-2xx R_2` | = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `2` | `2` | |
|
`R_3 larr R_3-2xx R_2` | = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
|
The system associated with the eigenvalue `lamda=0` | `(A' * A-0I)` | | = | | `1` | `0` | `0` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
| | | = | |
`=>x_1=0,x_2+x_3=0` `=>x_1=0,x_2=-x_3` `:.` eigenvectors corresponding to the eigenvalue `lamda=0` is Let `x_3=1` For Eigenvector-1 `(0.4653,1,1)`, Length L = `sqrt(|0.46527|^2+|1|^2+|1|^2)=1.4888` So, normalizing gives `v_1=((0.4653)/(1.4888),(1)/(1.4888),(1)/(1.4888))=(0.3125,0.6717,0.6717)`For Eigenvector-2 `(-4.2986,1,1)`, Length L = `sqrt(|-4.2986|^2+|1|^2+|1|^2)=4.5253` So, normalizing gives `v_2=((-4.2986)/(4.5253),(1)/(4.5253),(1)/(4.5253))=(-0.9499,0.221,0.221)`For Eigenvector-3 `(0,-1,1)`, Length L = `sqrt(|0|^2+|-1|^2+|1|^2)=1.4142` So, normalizing gives `v_3=((0)/(1.4142),(-1)/(1.4142),(1)/(1.4142))=(0,-0.7071,0.7071)` `1^"st"` SVD Solution using `A*A'`| `:. U = ` | `[u_1,u_2,u_3]` | `=` | | `0.2182` | `0.7868` | `-0.5774` | | | `-0.5723` | `0.5824` | `0.5774` | | | `0.7905` | `0.2044` | `0.5774` | |
|
| `:. Sigma = ` | | `sqrt(57.5832)` | `0` | `0` | | | `0` | `sqrt(0.4168)` | `0` | | | `0` | `0` | `sqrt(0)` | |
| `=` | | `7.5884` | `0` | `0` | | | `0` | `0.6456` | `0` | | | `0` | `0` | `0` | |
|
`V` is found using formula `v_i=1/sigma_i A^T*u_i` | `:. V = ` | | `0.3125` | `0.9498` | `0` | | | `0.6717` | `-0.2212` | `-0.7071` | | | `0.6717` | `-0.2212` | `0.7071` | |
|
`2^"nd"` SVD Solution using `A'*A``U` is found using formula `u_i=1/sigma_i A*v_i` | `:. U = ` | | `0.2182` | `-0.7867` | `-0.5774` | | | `-0.5723` | `-0.5826` | `0.5774` | | | `0.7905` | `-0.2042` | `0.5774` | |
|
| `:. Sigma = ` | | `sqrt(57.5832)` | `0` | `0` | | | `0` | `sqrt(0.4168)` | `0` | | | `0` | `0` | `sqrt(0)` | |
| `=` | | `7.5884` | `0` | `0` | | | `0` | `0.6456` | `0` | | | `0` | `0` | `0` | |
|
| `:. V = ` | `[v_1,v_2,v_3]` | `=` | | `0.3125` | `-0.9499` | `0` | | | `0.6717` | `0.221` | `-0.7071` | | | `0.6717` | `0.221` | `0.7071` | |
|
Verify `1^"st"` Solution `A = U Sigma V^T`| `U×Sigma` | = | | `0.21822` | `0.7868` | `-0.57735` | | | `-0.57228` | `0.58238` | `0.57735` | | | `0.79049` | `0.20442` | `0.57735` | |
| × | | `7.58836` | `0` | `0` | | | `0` | `0.64559` | `0` | | | `0` | `0` | `0` | |
|
| = | | `0.21822×7.58836+0.7868×0+(-0.57735)×0` | `0.21822×0+0.7868×0.64559+(-0.57735)×0` | `0.21822×0+0.7868×0+(-0.57735)×0` | | | `-0.57228×7.58836+0.58238×0+0.57735×0` | `-0.57228×0+0.58238×0.64559+0.57735×0` | `-0.57228×0+0.58238×0+0.57735×0` | | | `0.79049×7.58836+0.20442×0+0.57735×0` | `0.79049×0+0.20442×0.64559+0.57735×0` | `0.79049×0+0.20442×0+0.57735×0` | |
|
| = | | `1.65593+0+0` | `0+0.50795+0` | `0+0+0` | | | `-4.34267+0+0` | `0+0.37598+0` | `0+0+0` | | | `5.99852+0+0` | `0+0.13197+0` | `0+0+0` | |
|
| = | | `1.65593` | `0.50795` | `0` | | | `-4.34267` | `0.37598` | `0` | | | `5.99852` | `0.13197` | `0` | |
|
| `(U × Sigma)×(V^T)` | = | | `1.65593` | `0.50795` | `0` | | | `-4.34267` | `0.37598` | `0` | | | `5.99852` | `0.13197` | `0` | |
| × | | `0.31252` | `0.6717` | `0.6717` | | | `0.94983` | `-0.22119` | `-0.22119` | | | `0` | `-0.70711` | `0.70711` | |
|
| = | | `1.65593×0.31252+0.50795×0.94983+0×0` | `1.65593×0.6717+0.50795×(-0.22119)+0×(-0.70711)` | `1.65593×0.6717+0.50795×(-0.22119)+0×0.70711` | | | `-4.34267×0.31252+0.37598×0.94983+0×0` | `-4.34267×0.6717+0.37598×(-0.22119)+0×(-0.70711)` | `-4.34267×0.6717+0.37598×(-0.22119)+0×0.70711` | | | `5.99852×0.31252+0.13197×0.94983+0×0` | `5.99852×0.6717+0.13197×(-0.22119)+0×(-0.70711)` | `5.99852×0.6717+0.13197×(-0.22119)+0×0.70711` | |
|
| = | | `0.51751+0.48247+0` | `1.11229+(-0.11235)+0` | `1.11229+(-0.11235)+0` | | | `-1.35717+0.35712+0` | `-2.91697+(-0.08316)+0` | `-2.91697+(-0.08316)+0` | | | `1.87466+0.12535+0` | `4.02921+(-0.02919)+0` | `4.02921+(-0.02919)+0` | |
|
| = | | `0.99998` | `0.99994` | `0.99994` | | | `-1.00005` | `-3.00013` | `-3.00013` | | | `2.00001` | `4.00002` | `4.00002` | |
|
`1^"st"` Solution is possible. `1^"st"` Solution is possible.Verify `2^"nd"` Solution `A = U Sigma V^T`| `U×Sigma` | = | | `0.21822` | `-0.78672` | `-0.57735` | | | `-0.57228` | `-0.58257` | `0.57735` | | | `0.7905` | `-0.20415` | `0.57735` | |
| × | | `7.58836` | `0` | `0` | | | `0` | `0.64559` | `0` | | | `0` | `0` | `0` | |
|
| = | | `0.21822×7.58836+(-0.78672)×0+(-0.57735)×0` | `0.21822×0+(-0.78672)×0.64559+(-0.57735)×0` | `0.21822×0+(-0.78672)×0+(-0.57735)×0` | | | `-0.57228×7.58836+(-0.58257)×0+0.57735×0` | `-0.57228×0+(-0.58257)×0.64559+0.57735×0` | `-0.57228×0+(-0.58257)×0+0.57735×0` | | | `0.7905×7.58836+(-0.20415)×0+0.57735×0` | `0.7905×0+(-0.20415)×0.64559+0.57735×0` | `0.7905×0+(-0.20415)×0+0.57735×0` | |
|
| = | | `1.65593+0+0` | `0+(-0.5079)+0` | `0+0+0` | | | `-4.34267+0+0` | `0+(-0.3761)+0` | `0+0+0` | | | `5.9986+0+0` | `0+(-0.1318)+0` | `0+0+0` | |
|
| = | | `1.65593` | `-0.5079` | `0` | | | `-4.34267` | `-0.3761` | `0` | | | `5.9986` | `-0.1318` | `0` | |
|
| `(U × Sigma)×(V^T)` | = | | `1.65593` | `-0.5079` | `0` | | | `-4.34267` | `-0.3761` | `0` | | | `5.9986` | `-0.1318` | `0` | |
| × | | `0.31252` | `0.67169` | `0.67169` | | | `-0.94991` | `0.22098` | `0.22098` | | | `0` | `-0.70711` | `0.70711` | |
|
| = | | `1.65593×0.31252+(-0.5079)×(-0.94991)+0×0` | `1.65593×0.67169+(-0.5079)×0.22098+0×(-0.70711)` | `1.65593×0.67169+(-0.5079)×0.22098+0×0.70711` | | | `-4.34267×0.31252+(-0.3761)×(-0.94991)+0×0` | `-4.34267×0.67169+(-0.3761)×0.22098+0×(-0.70711)` | `-4.34267×0.67169+(-0.3761)×0.22098+0×0.70711` | | | `5.9986×0.31252+(-0.1318)×(-0.94991)+0×0` | `5.9986×0.67169+(-0.1318)×0.22098+0×(-0.70711)` | `5.9986×0.67169+(-0.1318)×0.22098+0×0.70711` | |
|
| = | | `0.51751+0.48246+0` | `1.11227+(-0.11224)+0` | `1.11227+(-0.11224)+0` | | | `-1.35717+0.35726+0` | `-2.91693+(-0.08311)+0` | `-2.91693+(-0.08311)+0` | | | `1.87468+0.1252+0` | `4.0292+(-0.02912)+0` | `4.0292+(-0.02912)+0` | |
|
| = | | `0.99997` | `1.00004` | `1.00004` | | | `-0.99991` | `-3.00004` | `-3.00004` | | | `1.99988` | `4.00007` | `4.00007` | |
|
`2^"nd"` Solution is possible. `2^"nd"` Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[1,0,1,0],[0,1,0,1]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|
|
|