|
|
|
|
Home > Matrix & Vector calculators > SVD - Singular Value Decomposition example
|
|
|
17. SVD - Singular Value Decomposition example
( Enter your problem )
|
- Example `[[4,0],[3,-5]]`
- Example `[[1,0,1,0],[0,1,0,1]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[2,3],[4,10]]`
Find SVD - Singular Value Decomposition ... `[[2,3],[4,10]]`Solution:
`A' * A`| = | | `2×2+4×4` | `2×3+4×10` | | | `3×2+10×4` | `3×3+10×10` | |
|
| = | | `4+16` | `6+40` | | | `6+40` | `9+100` | |
|
Find Eigen vector for `A' * A` `|A' * A-lamdaI|=0` | `(20-lamda)` | `46` | | | `46` | `(109-lamda)` | |
| = 0 |
`:.(20-lamda) × (109-lamda) - 46 × 46=0` `:.(2180-129lamda+lamda^2)-2116=0` `:.(lamda^2-129lamda+64)=0` `:.(lamda-0.498)(lamda-128.502)=0` `:.(lamda-0.498)=0 or (lamda-128.502)=0` `:.lamda=0.498 or lamda=128.502` `:.` The eigenvalues of the matrix `A' * A` are given by `lamda=0.498,128.502` 1. Eigenvectors for `lamda=128.502`
1. Eigenvectors for `lamda=128.502` | `A' * A-lamdaI = ` | | - `128.502` | |
| = | | `-108.502` | `46` | | | `46` | `-19.502` | |
|
Now, reduce this matrix `R_1 larr R_1-:(-108.502)` `R_2 larr R_2-46xx R_1` The system associated with the eigenvalue `lamda=128.502` `=>x_1-0.424x_2=0` `=>x_1=0.424x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=128.502` is Let `x_2=1` 2. Eigenvectors for `lamda=0.498`
2. Eigenvectors for `lamda=0.498` | `A' * A-lamdaI = ` | | - `0.498` | |
| = | | `19.502` | `46` | | | `46` | `108.502` | |
|
Now, reduce this matrix `R_1 larr R_1-:19.502` `R_2 larr R_2-46xx R_1` The system associated with the eigenvalue `lamda=0.498` `=>x_1+2.3587x_2=0` `=>x_1=-2.3587x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.498` is Let `x_2=1` For Eigenvector-1 `(0.424,1)`, Length L = `sqrt(|0.42396|^2+|1|^2)=1.0862` So, normalizing gives `v_1=((0.424)/(1.0862),(1)/(1.0862))=(0.3903,0.9207)`For Eigenvector-2 `(-2.3587,1)`, Length L = `sqrt(|-2.35874|^2+|1|^2)=2.562` So, normalizing gives `v_2=((-2.3587)/(2.562),(1)/(2.562))=(-0.9207,0.3903)`Solution `U` is found using formula `u_i=1/sigma_i A*v_i` | `:. U = ` | | `0.3125` | `-0.9501` | | | `0.9499` | `0.312` | |
|
| `:. Sigma = ` | | `sqrt(128.502)` | `0` | | | `0` | `sqrt(0.498)` | |
| `=` | |
| `:. V = ` | `[v_1,v_2]` | `=` | | `0.3903` | `-0.9207` | | | `0.9207` | `0.3903` | |
|
Verify Solution `A = U Sigma V^T`| `U×Sigma` | = | | `0.31252` | `-0.95009` | | | `0.94992` | `0.31202` | |
| × | | `11.33587` | `0` | | | `0` | `0.70572` | |
|
| = | | `0.31252×11.33587+(-0.95009)×0` | `0.31252×0+(-0.95009)×0.70572` | | | `0.94992×11.33587+0.31202×0` | `0.94992×0+0.31202×0.70572` | |
|
| = | | `3.54269+0` | `0+(-0.6705)` | | | `10.76817+0` | `0+0.2202` | |
|
| = | | `3.54269` | `-0.6705` | | | `10.76817` | `0.2202` | |
|
| `(U × Sigma)×(V^T)` | = | | `3.54269` | `-0.6705` | | | `10.76817` | `0.2202` | |
| × | | `0.39033` | `0.92068` | | | `-0.92068` | `0.39033` | |
|
| = | | `3.54269×0.39033+(-0.6705)×(-0.92068)` | `3.54269×0.92068+(-0.6705)×0.39033` | | | `10.76817×0.39033+0.2202×(-0.92068)` | `10.76817×0.92068+0.2202×0.39033` | |
|
| = | | `1.38282+0.61731` | `3.26168+(-0.26172)` | | | `4.20314+(-0.20273)` | `9.91404+0.08595` | |
|
| = | | `2.00013` | `2.99996` | | | `4.00041` | `9.99999` | |
|
Solution is possible. Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|