Binary Division Example ( Enter your problem )
  1. Addition
  2. Subtraction
  3. Multiplication
  4. Division
Other related methods
  1. Addition, Subtraction, Multiplication, Division of two Decimal numbers
  2. Addition, Subtraction, Multiplication, Division of two Binary numbers
  3. Addition, Subtraction, Multiplication, Division of two Octal numbers
  4. Addition, Subtraction, Multiplication, Division of two Hexadecimal numbers
  5. Addition, Subtraction, Multiplication, Division of two any base numbers

3. Multiplication
(Previous example)
3. Addition, Subtraction, Multiplication, Division of two Octal numbers
(Next method)

4. Binary Division





1. Find division of `(1011)_2` and `(10)_2`

Solution:

Solution is
  101
101011
10  =10 × 1
  1 
  0 =10 × 0
  11
  10=10 × 1
  1

`:.` 1011 `-:` 10= 101 Remainder 1
10 table
10×1=10
10×10=100




Step by step solution

Step by step solution :
Step-1 :
Set up the problem with long division bracket. Put dividend inside bracket and divisor on outside left.
     
101011

Step-2 :
10 goes into 10 (1-times). Put a 1 in the next place of quotient and multiply 10 by 1 to get 10.
Subtract 10 from 10 to get remainder `(10-10=0)`.


  1  
101011
10  =10 × 1
  0  

Step-3 :
Now, bring down 1 from the dividend, to make 1
  1  
101011
10  =10 × 1
  1 

Step-4 :
10 goes into 1 (0-times). Put a 0 in the next place of quotient and multiply 10 by 0 to get 0.
Subtract 0 from 1 to get remainder `(1-0=1)`.


  10 
101011
10  =10 × 1
  1 
  0 =10 × 0
  1 

Step-5 :
Now, bring down 1 from the dividend, to make 11
  10 
101011
10  =10 × 1
  1 
  0 =10 × 0
  11

Step-6 :
10 goes into 11 (1-times). Put a 1 in the next place of quotient and multiply 10 by 1 to get 10.
Subtract 10 from 11 to get remainder `(11-10=1)`.


  101
101011
10  =10 × 1
  1 
  0 =10 × 0
  11
  10=10 × 1
  1


2. Find division of `(11101)_2` and `(101)_2`

Solution:

Solution is
  101
10111101
101  =101 × 1
  100 
  0 =101 × 0
  1001
  101=101 × 1
  100

`:.` 11101 `-:` 101= 101 Remainder 100
101 table
101×1=101
101×10=1010




Step by step solution

Step by step solution :
Step-1 :
Set up the problem with long division bracket. Put dividend inside bracket and divisor on outside left.
      
10111101

Step-2 :
101 goes into 111 (1-times). Put a 1 in the next place of quotient and multiply 101 by 1 to get 101.
Subtract 101 from 111 to get remainder `(111-101=10)`.


  1  
10111101
101  =101 × 1
  10  

Step-3 :
Now, bring down 0 from the dividend, to make 100
  1  
10111101
101  =101 × 1
  100 

Step-4 :
101 goes into 100 (0-times). Put a 0 in the next place of quotient and multiply 101 by 0 to get 0.
Subtract 0 from 100 to get remainder `(100-0=100)`.


  10 
10111101
101  =101 × 1
  100 
  0 =101 × 0
  100 

Step-5 :
Now, bring down 1 from the dividend, to make 1001
  10 
10111101
101  =101 × 1
  100 
  0 =101 × 0
  1001

Step-6 :
101 goes into 1001 (1-times). Put a 1 in the next place of quotient and multiply 101 by 1 to get 101.
Subtract 101 from 1001 to get remainder `(1001-101=100)`.


  101
10111101
101  =101 × 1
  100 
  0 =101 × 0
  1001
  101=101 × 1
  100


3. Find division of `(11101)_2` and `(110)_2`

Solution:

Solution is
  100
11011101
110  =110 × 1
  10 
  0 =110 × 0
  101
  0=110 × 0
  101

`:.` 11101 `-:` 110= 100 Remainder 101
110 table
110×1=110
110×10=1100




Step by step solution

Step by step solution :
Step-1 :
Set up the problem with long division bracket. Put dividend inside bracket and divisor on outside left.
      
11011101

Step-2 :
110 goes into 111 (1-times). Put a 1 in the next place of quotient and multiply 110 by 1 to get 110.
Subtract 110 from 111 to get remainder `(111-110=1)`.


  1  
11011101
110  =110 × 1
  1  

Step-3 :
Now, bring down 0 from the dividend, to make 10
  1  
11011101
110  =110 × 1
  10 

Step-4 :
110 goes into 10 (0-times). Put a 0 in the next place of quotient and multiply 110 by 0 to get 0.
Subtract 0 from 10 to get remainder `(10-0=10)`.


  10 
11011101
110  =110 × 1
  10 
  0 =110 × 0
  10 

Step-5 :
Now, bring down 1 from the dividend, to make 101
  10 
11011101
110  =110 × 1
  10 
  0 =110 × 0
  101

Step-6 :
110 goes into 101 (0-times). Put a 0 in the next place of quotient and multiply 110 by 0 to get 0.
Subtract 0 from 101 to get remainder `(101-0=101)`.


  100
11011101
110  =110 × 1
  10 
  0 =110 × 0
  101
  0=110 × 0
  101



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Multiplication
(Previous example)
3. Addition, Subtraction, Multiplication, Division of two Octal numbers
(Next method)






Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.