Home > Algebra calculators > Partial Fraction decomposition example

Partial Fraction decomposition example ( Enter your problem )
  1. Example `(5x-4)/(x^2-x-2)`
  2. Example `(3x)/(x^2+2x+1)`
  3. Example `(x-3)/(x^3+2x^2+x)`
  4. Example `(x^2+15)/((x+3)^2(x^2+3))`
  5. Example `(2x^3)/((x+1)(x-1))`
  6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

1. Example `(5x-4)/(x^2-x-2)`
(Previous example)
3. Example `(x-3)/(x^3+2x^2+x)`
(Next example)

2. Example `(3x)/(x^2+2x+1)`





Partial Fraction `(3x)/(x^2+2x+1)`

Solution:
1. Factors the denominator
`(3x)/(x^2+2x+1)=(3x)/((x+1)^2)`

2. Partial Fraction for each factors
`:. (3x)/((x+1)^2)=A/(x+1)+B/(x+1)^2`

3. Multiply through by the common denominator of `(x+1)^2`

`:. 3x=A(x+1)+B1`

`:. 3x=Ax+A+B`

4. Group the `x`-terms and the constant terms

`:. 3x=Ax+(A+B)`

5. Coefficients of the two polynomials must be equal, so we get equations
`A=3`

`A+B=0`

Solution of equations using Elimination method

Total Equations are `2`

`A+0B=3 -> (1)`

`A+B=0 -> (2)`



Now use back substitution method
From (1)
`A=3`

`=>A=3`

From (2)
`A+B=0`

`=>(3)+B=0`

`=>B+3=0`

`=>B=0-3=-3`

Solution using back substitution method.
`A = 3,B = -3`



After solving these equations, we get
`A=3,B=-3`

Substitute these values in the original fractions
`((3x))/((x+1)^2)=(3)/(x+1)+(-3)/(x+1)^2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example `(5x-4)/(x^2-x-2)`
(Previous example)
3. Example `(x-3)/(x^3+2x^2+x)`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.