Home > Algebra calculators > Partial Fraction decomposition example

Partial Fraction decomposition example ( Enter your problem )
  1. Example `(5x-4)/(x^2-x-2)`
  2. Example `(3x)/(x^2+2x+1)`
  3. Example `(x-3)/(x^3+2x^2+x)`
  4. Example `(x^2+15)/((x+3)^2(x^2+3))`
  5. Example `(2x^3)/((x+1)(x-1))`
  6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

2. Example `(3x)/(x^2+2x+1)`
(Previous example)
4. Example `(x^2+15)/((x+3)^2(x^2+3))`
(Next example)

3. Example `(x-3)/(x^3+2x^2+x)`





Partial Fraction `(x-3)/(x^3+2x^2+x)`

Solution:
1. Factors the denominator
`(x-3)/(x^3+2x^2+x)=(x-3)/(x(x+1)^2)`

2. Partial fraction for each factors
`:. (x-3)/(x(x+1)^2)=A/(x)+B/(x+1)+C/(x+1)^2`

3. Multiply through by the common denominator of `x(x+1)^2`

`:. x-3=A xx ((x+1)^2)+B xx (x(x+1))+C xx (x)`

`:. x-3=A xx (x^2+2x+1)+B xx (x^2+x)+C xx (x)`

`:. x-3=Ax^2+2Ax+A+Bx^2+Bx+Cx`

4. Group the `x`-terms and the constant terms

`:. x-3=(A+B)x^2+(2A+B+C)x+A`

5. Coefficients of the two polynomials must be equal, so we get equations
`A+B=0`

`2A+B+C=1`

`A=-3`

Solution of equations using Elimination method

Total Equations are `3`

`a+b+0c=0 -> (1)`

`2a+b+c=1 -> (2)`

`a+0b+0c=-3 -> (3)`



Select the equations `(1)` and `(2)`, and eliminate the variable `a`.

`a+b=0`` xx 2->````2a``+``2b``=``0```
`2a+b+c=1`` xx 1->````2a``+``b``+``c``=``1```

```b``-``c``=``-1`` -> (4)`




Select the equations `(1)` and `(3)`, and eliminate the variable `a`.

`a+b=0`` xx 1->````a``+``b``=``0```
`a=-3`` xx 1->````a``=``-3```

```b``=``3`` -> (5)`




Select the equations `(4)` and `(5)`, and eliminate the variable `b`.

`b-c=-1`` xx 1->````b``-``c``=``-1```
`b=3`` xx 1->````b``=``3```

`-``c``=``-4`` -> (6)`


Now use back substitution method
From (6)
`-c=-4`

`=>c=4`

From (4)
`b-c=-1`

`=>b-(4)=-1`

`=>b-4=-1`

`=>b=-1+4=3`

From (1)
`a+b=0`

`=>a+(3)=0`

`=>a+3=0`

`=>a=0-3=-3`

Solution using back substitution method.
`a=-3,b=3,c=4`



After solving these equations, we get
`a=-3,b=3,c=4`

Substitute these values in the original fraction
`((x-3))/(x(x+1)^2)=(-3)/(x)+(3)/(x+1)+(4)/(x+1)^2`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example `(3x)/(x^2+2x+1)`
(Previous example)
4. Example `(x^2+15)/((x+3)^2(x^2+3))`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.