Home > Algebra calculators > Partial Fraction decomposition example

Partial Fraction decomposition example ( Enter your problem )
  1. Example `(5x-4)/(x^2-x-2)`
  2. Example `(3x)/(x^2+2x+1)`
  3. Example `(x-3)/(x^3+2x^2+x)`
  4. Example `(x^2+15)/((x+3)^2(x^2+3))`
  5. Example `(2x^3)/((x+1)(x-1))`
  6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

5. Example `(2x^3)/((x+1)(x-1))`
(Previous example)

6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`





Partial Fraction `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

Solution:
The numerator `x^5-2x^4+x^3+x+5` is of degree 5 and the denominator `x^3-2x^2+x-2` is of degree 3. So first do the long division

long division of `x^5-2x^4+x^3+x+5` and `x^3-2x^2+x-2`


Final Solution
 ```x^2`  
`color{blue}{x^3-2x^2+x-2}``` `x^5``-` `2x^4``+` `x^3``+` `0x^2``+` `x``+` `5`  
 ```x^5``-`+`2x^4``+``x^3``-`+`2x^2` `color{green}{x^2} xx (color{blue}{x^3-2x^2+x-2})`
 `` `2x^2``+` `x``+` `5`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x^2 + (color{Magenta}{2x^2+x+5})/(color{blue}{x^3-2x^2+x-2})`
 
Here, Divisor = `x^3-2x^2+x-2`
Dividend = `x^5-2x^4+x^3+x+5`
Quotient = `x^2`
Remainder = `2x^2+x+5`



Step by step division solution

Step - 1 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^5)/(x^3)=color{green}{x^2}`

2. Write down the calculated result `color{green}{x^2}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{x^2} xx (color{blue}{x^3-2x^2+x-2})=color{red}{x^5-2x^4+x^3-2x^2}`

4. Subtract this result from the dividend
`(x^5-2x^4+x^3+0x^2+x+5)-(color{red}{x^5-2x^4+x^3-2x^2})=color{Magenta}{2x^2+x+5}`

 ```x^2`  
`color{blue}{x^3-2x^2+x-2}``` `x^5``-` `2x^4``+` `x^3``+` `0x^2``+` `x``+` `5`  
 ```x^5``-`+`2x^4``+``x^3``-`+`2x^2` `color{green}{x^2} xx (color{blue}{x^3-2x^2+x-2})`
 `` `2x^2``+` `x``+` `5`  


The long division gives
`(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2) = x^2 + (2x^2+x+5)/(x^3-2x^2+x-2)`

Now find partial fraction of `(2x^2+x+5)/(x^3-2x^2+x-2)`



1. Factors the denominator
`(2x^2+x+5)/(x^3-2x^2+x-2)=(2x^2+x+5)/((x-2)(x^2+1))`

2. Partial fraction for each factors
`:. (2x^2+x+5)/((x-2)(x^2+1))=A/(x-2)+(Bx+C)/(x^2+1)`

3. Multiply through by the common denominator of `(x-2)(x^2+1)`

`:. 2x^2+x+5=A xx (x^2+1)+(Bx+C) xx (x-2)`

`:. 2x^2+x+5=Ax^2+A+Bx^2-2Bx+Cx-2C`

4. Group the `x`-terms and the constant terms

`:. 2x^2+x+5=(A+B)x^2+(-2B+C)x+(A-2C)`

5. Coefficients of the two polynomials must be equal, so we get equations
`A+B=2`

`-2B+C=1`

`A-2C=5`

Solution of equations using Elimination method

Total Equations are `3`

`a+b+0c=2 -> (1)`

`0a-2b+c=1 -> (2)`

`a+0b-2c=5 -> (3)`



Select the equations `(1)` and `(3)`, and eliminate the variable `a`.

`a+b=2`` xx 1->````a``+``b``=``2```
`a-2c=5`` xx 1->````a``-``2c``=``5```

```b``+``2c``=``-3`` -> (4)`




Select the equations `(2)` and `(4)`, and eliminate the variable `b`.

`-2b+c=1`` xx -1->````2b``-``c``=``-1```
`b+2c=-3`` xx 2->````2b``+``4c``=``-6```

`-``5c``=``5`` -> (5)`


Now use back substitution method
From (5)
`-5c=5`

`=>c=(5)/(-5)=-1`

From (2)
`-2b+c=1`

`=>-2b+(-1)=1`

`=>-2b-1=1`

`=>-2b=1+1=2`

`=>b=(2)/(-2)=-1`

From (1)
`a+b=2`

`=>a+(-1)=2`

`=>a-1=2`

`=>a=2+1=3`

Solution using back substitution method.
`a=3,b=-1,c=-1`



After solving these equations, we get
`a=3,b=-1,c=-1`

Substitute these values in the original fraction
`((x^5-2x^4+x^3+x+5))/((x-2)(x^2+1))=x^2+(3)/(x-2)+(-1x-1)/(x^2+1)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Example `(2x^3)/((x+1)(x-1))`
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.