Home > Algebra calculators > Division of two polynomials example

4. polynomial Long division example ( Enter your problem )
  1. Examples
Other related methods
  1. Adding polynomials
  2. Subtracting polynomials
  3. Multiplying Polynomials
  4. polynomial Long division
  5. polynomial Synthetic division
  6. Remainder theorem

3. Multiplying Polynomials
(Previous method)
5. polynomial Synthetic division
(Next method)

1. Examples





1. Find division of `x^2-10x+25` and `x-5`

Solution:
Final Solution
 ```x``-``5`  
`color{blue}{x-5}``` `x^2``-` `10x``+` `25`  
 ```x^2``-`+`5x` `x xx (color{blue}{x-5})`
 `-` `5x``+` `25`  
 `-`+`5x``+``25` `color{green}{-5} xx (color{blue}{x-5})`
 `` `0`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x-5 + (color{Magenta}{0})/(color{blue}{x-5})`
 
Here, Divisor = `x-5`
Dividend = `x^2-10x+25`
Quotient = `x-5`
Remainder = `0`



Step by step division solution

Step - 1 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^2)/(x)=color{green}{x}`

2. Write down the calculated result `color{green}{x}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{x} xx (color{blue}{x-5})=color{red}{x^2-5x}`

4. Subtract this result from the dividend
`(x^2-10x+25)-(color{red}{x^2-5x})=color{Magenta}{-5x+25}`

 ```x`  
`color{blue}{x-5}``` `x^2``-` `10x``+` `25`  
 ```x^2``-`+`5x` `color{green}{x} xx (color{blue}{x-5})`
 `-` `5x``+` `25`  


Step - 2 :
1. Divide the first term of the dividend by the first term of the divisor : `(-5x)/(x)=color{green}{-5}`

2. Write down the calculated result `color{green}{-5}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{-5} xx (color{blue}{x-5})=color{red}{-5x+25}`

4. Subtract this result from the remainder
`(-5x+25)-(color{red}{-5x+25})=color{Magenta}{0}`

 ```x``-``5`  
`color{blue}{x-5}``` `x^2``-` `10x``+` `25`  
 ```x^2``-`+`5x` `x xx (color{blue}{x-5})`
 `-` `5x``+` `25`  
 `-`+`5x``+``25` `color{green}{-5} xx (color{blue}{x-5})`
 `` `0`  



2. Find division of `x^3+4x^2-4x-16` and `x-2`

Solution:
Final Solution
 ```x^2``+``6x``+``8`  
`color{blue}{x-2}``` `x^3``+` `4x^2``-` `4x``-` `16`  
 ```x^3``-`+`2x^2` `x^2 xx (color{blue}{x-2})`
 `` `6x^2``-` `4x``-` `16`  
 ```6x^2``-`+`12x` `6x xx (color{blue}{x-2})`
 `` `8x``-` `16`  
 ```8x``-`+`16` `color{green}{8} xx (color{blue}{x-2})`
 `` `0`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x^2+6x+8 + (color{Magenta}{0})/(color{blue}{x-2})`
 
Here, Divisor = `x-2`
Dividend = `x^3+4x^2-4x-16`
Quotient = `x^2+6x+8`
Remainder = `0`



Step by step division solution

Step - 1 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^3)/(x)=color{green}{x^2}`

2. Write down the calculated result `color{green}{x^2}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{x^2} xx (color{blue}{x-2})=color{red}{x^3-2x^2}`

4. Subtract this result from the dividend
`(x^3+4x^2-4x-16)-(color{red}{x^3-2x^2})=color{Magenta}{6x^2-4x-16}`

 ```x^2`  
`color{blue}{x-2}``` `x^3``+` `4x^2``-` `4x``-` `16`  
 ```x^3``-`+`2x^2` `color{green}{x^2} xx (color{blue}{x-2})`
 `` `6x^2``-` `4x``-` `16`  


Step - 2 :
1. Divide the first term of the dividend by the first term of the divisor : `(6x^2)/(x)=color{green}{6x}`

2. Write down the calculated result `color{green}{6x}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{6x} xx (color{blue}{x-2})=color{red}{6x^2-12x}`

4. Subtract this result from the remainder
`(6x^2-4x-16)-(color{red}{6x^2-12x})=color{Magenta}{8x-16}`

 ```x^2``+``6x`  
`color{blue}{x-2}``` `x^3``+` `4x^2``-` `4x``-` `16`  
 ```x^3``-`+`2x^2` `x^2 xx (color{blue}{x-2})`
 `` `6x^2``-` `4x``-` `16`  
 ```6x^2``-`+`12x` `color{green}{6x} xx (color{blue}{x-2})`
 `` `8x``-` `16`  


Step - 3 :
1. Divide the first term of the dividend by the first term of the divisor : `(8x)/(x)=color{green}{8}`

2. Write down the calculated result `color{green}{8}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{8} xx (color{blue}{x-2})=color{red}{8x-16}`

4. Subtract this result from the remainder
`(8x-16)-(color{red}{8x-16})=color{Magenta}{0}`

 ```x^2``+``6x``+``8`  
`color{blue}{x-2}``` `x^3``+` `4x^2``-` `4x``-` `16`  
 ```x^3``-`+`2x^2` `x^2 xx (color{blue}{x-2})`
 `` `6x^2``-` `4x``-` `16`  
 ```6x^2``-`+`12x` `6x xx (color{blue}{x-2})`
 `` `8x``-` `16`  
 ```8x``-`+`16` `color{green}{8} xx (color{blue}{x-2})`
 `` `0`  



3. Find division of `x^3-8y^3` and `x-2y`

Solution:
Final Solution
 `x^2+2xy+4y^2`  
`color{blue}{x-2y}``x^3-8y^3`  
 `x^3-2x^2y` `x^2 xx (color{blue}{x-2y})`
 `2x^2y-8y^3`  
 `2x^2y-4xy^2` `2xy xx (color{blue}{x-2y})`
 `4xy^2-8y^3`  
 `4xy^2-8y^3` `color{green}{4y^2} xx (color{blue}{x-2y})`
 `0`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x^2+2xy+4y^2 + (color{Magenta}{0})/(color{blue}{x-2y})`
 
Here, Divisor = `x-2y`
Dividend = `x^3-8y^3`
Quotient = `x^2+2xy+4y^2`
Remainder = `0`







This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Multiplying Polynomials
(Previous method)
5. polynomial Synthetic division
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.