Home > Algebra calculators > If `alpha` and `beta` are roots of quadratic equation, then find `alpha^2+beta^2` example

If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find `alpha^2+beta^2` example ( Enter your problem )
  1. Example-1
Other related methods
  1. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find `alpha^2+beta^2`
  2. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find equation whose roots are `alpha^2` and `beta^2`
  3. Find value of `k` for which quadratic equation `2x^2+kx+2=0` has real roots

2. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find equation whose roots are `alpha^2` and `beta^2`
(Next method)

1. Example-1





1. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alpha^2+beta^2`

Solution:
`3x^2+8x+2=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=3,b=8,c=2`

Sum of roots `=alpha+beta=(-b)/a=(-8)/3`

Product of roots `=alpha*beta=c/a=2/3`

Now we have to find `alpha^2+beta^2`

`alpha^2+beta^2=52/9`

We know that

`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`

`:.alpha^2+beta^2=((-8)/3)^2-2*2/3`

`:.alpha^2+beta^2=64/9-4/3`

`:.alpha^2+beta^2=52/9`


`:.alpha^2+beta^2=52/9`


2. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alpha-beta`

Solution:
`3x^2+8x+2=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=3,b=8,c=2`

Sum of roots `=alpha+beta=(-b)/a=(-8)/3`

Product of roots `=alpha*beta=c/a=2/3`

Now we have to find `alpha-beta`

`alpha-beta=(2sqrt(10))/3`

We know that

`(alpha-beta)^2=(alpha+beta)^2-4alphabeta`

`:.(alpha-beta)^2=((-8)/3)^2-4*2/3`

`:.(alpha-beta)^2=64/9-8/3`

`:.(alpha-beta)^2=40/9`

`:.alpha-beta=(2sqrt(10))/3`


`:.alpha-beta=(2sqrt(10))/3`


3. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alpha^3+beta^3`

Solution:
`3x^2+8x+2=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=3,b=8,c=2`

Sum of roots `=alpha+beta=(-b)/a=(-8)/3`

Product of roots `=alpha*beta=c/a=2/3`

Now we have to find `alpha^3+beta^3`

`alpha^3+beta^3=(-368)/27`

We know that

`alpha^3+beta^3=(alpha+beta)^3-3alphabeta(alpha+beta)`

`:.alpha^3+beta^3=((-8)/3)^3-3*2/3*(-8)/3`

`:.alpha^3+beta^3=(-512)/27+16/3`

`:.alpha^3+beta^3=(-368)/27`


`:.alpha^3+beta^3=(-368)/27`


4. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alpha/beta^2+beta/alpha^2`

Solution:
`3x^2+8x+2=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=3,b=8,c=2`

Sum of roots `=alpha+beta=(-b)/a=(-8)/3`

Product of roots `=alpha*beta=c/a=2/3`

Now we have to find `alpha/beta^2+beta/alpha^2`

`=(alpha^3+beta^3)/(beta^2alpha^2)`

`alpha^3+beta^3=(-368)/27`

We know that

`alpha^3+beta^3=(alpha+beta)^3-3alphabeta(alpha+beta)`

`:.alpha^3+beta^3=((-8)/3)^3-3*2/3*(-8)/3`

`:.alpha^3+beta^3=(-512)/27+16/3`

`:.alpha^3+beta^3=(-368)/27`


`beta^2alpha^2=4/9`

`:.(alpha^3+beta^3)/(beta^2alpha^2)=((-368)/27)/(4/9)=(-92)/3`

`:.alpha/beta^2+beta/alpha^2=(-92)/3`


5. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alphabeta^2+betaalpha^2`

Solution:
`3x^2+8x+2=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=3,b=8,c=2`

Sum of roots `=alpha+beta=(-b)/a=(-8)/3`

Product of roots `=alpha*beta=c/a=2/3`

Now we have to find `alphabeta^2+betaalpha^2`

`=alphabeta(beta+alpha)`

`:.alphabeta(beta+alpha)=2/3xx(-8)/3=(-16)/9`

`:.alphabeta^2+betaalpha^2=(-16)/9`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find equation whose roots are `alpha^2` and `beta^2`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.