Home > Algebra calculators > If `alpha` and `beta` are roots of quadratic equation, then find equation whose roots are `alpha^2` and `beta^2` example

If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find equation whose roots are `alpha^2` and `beta^2` example ( Enter your problem )
  1. Example-1
Other related methods
  1. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find `alpha^2+beta^2`
  2. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find equation whose roots are `alpha^2` and `beta^2`
  3. Find value of `k` for which quadratic equation `2x^2+kx+2=0` has real roots

1. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find `alpha^2+beta^2`
(Previous method)
3. Find value of `k` for which quadratic equation `2x^2+kx+2=0` has real roots
(Next method)

1. Example-1





1. If `alpha` and `beta` are roots of quadratic equation `2x^2+3x-1=0`, then form the equation whose roots are `alpha/beta,beta/alpha`

Solution:
`2x^2+3x-1=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=2,b=3,c=-1`

Sum of roots `=alpha+beta=(-b)/a=(-3)/2`

Product of roots `=alpha*beta=c/a=(-1)/2`

Now, find equation whose roots are `alpha/beta,beta/alpha`

Sum of roots `=(alpha/beta)+(beta/alpha)`

`=(alpha^2+beta^2)/(betaalpha)`

`alpha^2+beta^2=13/4`

We know that

`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`

`:.alpha^2+beta^2=((-3)/2)^2-2*(-1)/2`

`:.alpha^2+beta^2=9/4+1`

`:.alpha^2+beta^2=13/4`


`betaalpha=(-1)/2`

`:.(alpha^2+beta^2)/(betaalpha)=(13/4)/((-1)/2)=(-13)/2`

`:.` Sum of roots `=(-13)/2`

Product of roots `=(alpha/beta)*(beta/alpha)=1`

`:.` Required equation is

`x^2-((-13)/2)x+1=0`

`:.2x^2+13x+2=0`


2. If `alpha` and `beta` are roots of quadratic equation `2x^2+3x-1=0`, then form the equation whose roots are `alpha^2+2,beta^2+2`

Solution:
`2x^2+3x-1=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=2,b=3,c=-1`

Sum of roots `=alpha+beta=(-b)/a=(-3)/2`

Product of roots `=alpha*beta=c/a=(-1)/2`

Now, find equation whose roots are `alpha^2+2,beta^2+2`

Sum of roots `=(alpha^2+2)+(beta^2+2)=alpha^2+beta^2+4`

`alpha^2+beta^2=13/4`
`alpha^2+beta^2=13/4`

We know that

`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`

`:.alpha^2+beta^2=((-3)/2)^2-2*(-1)/2`

`:.alpha^2+beta^2=9/4+1`

`:.alpha^2+beta^2=13/4`


`:.alpha^2+beta^2=13/4`


`:.alpha^2+beta^2+4=13/4+4=29/4`

`:.` Sum of roots `=29/4`

Product of roots `=(alpha^2+2)*(beta^2+2)=alpha^2beta^2+2alpha^2+2beta^2+4`

`2alpha^2+2beta^2=13/2`
`alpha^2+beta^2=13/4`

We know that

`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`

`:.alpha^2+beta^2=((-3)/2)^2-2*(-1)/2`

`:.alpha^2+beta^2=9/4+1`

`:.alpha^2+beta^2=13/4`


`:.2*(alpha^2+beta^2)=2xx13/4=13/2`

`:.2alpha^2+2beta^2=13/2`


`alpha^2beta^2=1/4`
`:.alpha^2beta^2=1/4`


`:.alpha^2beta^2+2alpha^2+2beta^2+4=13/2+1/4+4=43/4`

`:.` Product of roots `=43/4`

`:.` Required equation is

`x^2-29/4x+43/4=0`

`:.4x^2-29x+43=0`


3. If `alpha` and `beta` are roots of quadratic equation `2x^2+3x-1=0`, then form the equation whose roots are `alpha^2beta,beta^2alpha`

Solution:
`2x^2+3x-1=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=2,b=3,c=-1`

Sum of roots `=alpha+beta=(-b)/a=(-3)/2`

Product of roots `=alpha*beta=c/a=(-1)/2`

Now, find equation whose roots are `alpha^2beta,beta^2alpha`

Sum of roots `=alpha^2beta+beta^2alpha`

`=alphabeta(alpha+beta)`

`:.alphabeta(alpha+beta)=(-1)/2xx(-3)/2=3/4`

`:.` Sum of roots `=3/4`

Product of roots `=alpha^2beta*beta^2alpha=alpha^3beta^3`

`:.` Product of roots `=(-1)/8`

`:.` Required equation is

`x^2-3/4x+((-1)/8)=0`

`:.8x^2-6x-1=0`


4. If `alpha` and `beta` are roots of quadratic equation `2x^2+3x-1=0`, then form the equation whose roots are `2alpha+3beta,3alpha+2beta`

Solution:
`2x^2+3x-1=0`

Comparing the given equation with `ax^2+bx+c=0`

We get `a=2,b=3,c=-1`

Sum of roots `=alpha+beta=(-b)/a=(-3)/2`

Product of roots `=alpha*beta=c/a=(-1)/2`

Now, find equation whose roots are `2alpha+3beta,3alpha+2beta`

Sum of roots `=(2alpha+3beta)+(3alpha+2beta)=5alpha+5beta`

`=5*(alpha+beta)`

`:.5*(alpha+beta)=5xx(-3)/2=(-15)/2`

`:.` Sum of roots `=(-15)/2`

Product of roots `=(2alpha+3beta)*(3alpha+2beta)=6alpha^2+4alphabeta+9betaalpha+6beta^2=6alpha^2+13alphabeta+6beta^2`

`6alpha^2+6beta^2=39/2`
`alpha^2+beta^2=13/4`

We know that

`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`

`:.alpha^2+beta^2=((-3)/2)^2-2*(-1)/2`

`:.alpha^2+beta^2=9/4+1`

`:.alpha^2+beta^2=13/4`


`:.6*(alpha^2+beta^2)=6xx13/4=39/2`

`:.6alpha^2+6beta^2=39/2`


`13alphabeta=(-13)/2`
`:.13alphabeta=(-13)/2`


`:.6alpha^2+13alphabeta+6beta^2=39/2-13/2=13`

`:.` Product of roots `=13`

`:.` Required equation is

`x^2-((-15)/2)x+13=0`

`:.2x^2+15x+26=0`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. If `alpha` and `beta` are roots of quadratic equation `2x^2-3x-6=0`, then find `alpha^2+beta^2`
(Previous method)
3. Find value of `k` for which quadratic equation `2x^2+kx+2=0` has real roots
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.