Home > Algebra calculators > If a:b:c=2:3:5 then find value of (a^2+b^2+c^2)/(ab+bc+ca) example

Ratio and Proportion - 1. If `a:b:c=2:3:5` then find value of `(a^2+b^2+c^2)/(ab+bc+ca)` example ( Enter your problem )
  1. Examples
Other related methods
  1. If `a:b:c=2:3:5` then find value of `(a^2+b^2+c^2)/(ab+bc+ca)`
  2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
  3. If `a/b=c/d=e/f` then prove that `(2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)`
  4. If `x/(y+z)=y/(z+x)=z/(x+y)` then prove the value of each ratio is `1/2` or `-1`
  5. Geometric Mean
  6. Duplicate ratio
  7. Triplicate ratio
  8. Sub-Duplicate ratio
  9. Sub-Triplicate ratio
  10. Compounded ratio
  11. Mean proportional
  12. Third proportional
  13. Fourth proportional
  14. Compare ratios

2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
(Next method)

1. Examples





1. If `a/b=2/3` then find value of `(2a-3b)/(a-2b)`

Solution:
`a/b=2/3`

`:.a/2=b/3`

Let `a/2=b/3=k` (say)

`:. a/2=k,b/3=k`

`:.a=2k,b=3k`

Now `(2a-3b)/(a-2b)`

`=(4k-9k)/(2k-6k)`

`=(-5k)/(-4k)`

Cancel the common factor `-k`

`=(5)/(4)`


2. If `a:2=b:3=c:5` then find value of `(a^2+b^2+c^2)/(ab+bc+ca)`

Solution:
`a:2=b:3=c:5`

Let `a:2=b:3=c:5=k` (say)

`:. a:2=k,b:3=k,c:5=k`

`:.a=2k,b=3k,c=5k`

Now `(a^2+b^2+c^2)/(ab+bc+ca)`

`=(4k^2+9k^2+25k^2)/(6k^2+15k^2+10k^2)`

`=(38k^(2))/(31k^(2))`

Cancel the common factor `k^(2)`

`=(38)/(31)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. If `a:b=2:3,b:c=4:5` then find `a:b:c`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.